Publications by authors named "Claus M Lehr"

Mucus layers, viscoelastic gels abundant in anionic mucin glycoproteins, obstruct therapeutic delivery across all mucosal surfaces. We found that strongly positively charged nanoparticles (NPs) rapidly adsorb a mucin protein corona in mucus, impeding cell binding and uptake. To overcome this, we developed mucus-evading, cell-adhesive (MECS) NPs with variable surface charge using Flash NanoPrecipitation, by blending a neutral poly(ethylene glycol) (PEG) corona for mucus transport with a small amount, 5 wt%, of polycationic dimethylaminoethyl methacrylate (PDMAEMA) for increased cell targeting.

View Article and Find Full Text PDF

The development of new orally inhaled drug products requires their demonstration of safety, which must be proven in animal experiments. New in vitro methods may replace, or at least reduce, these animal experiments, provided they are able to correctly predict safety or possible toxicity in humans. However, the challenge is to link in vitro data obtained in human cells to human in vivo data.

View Article and Find Full Text PDF

Vitamin D (VitD) has a role in the regulation of calcium and phosphate metabolism and in addition impacts the activity of the immune system. VitD deficiency might be linked to increased susceptibility to respiratory tract infection. The aim of the present study was to characterize the impact of VitD deficiency on the susceptibility to bacterial infection in murine models.

View Article and Find Full Text PDF

Trans-follicular (TF) vaccination has recently been studied as a unique route for non-invasive transcutaneous vaccination. The present study aims to extensively characterize the immune responses triggered by TF vaccination using ovalbumin loaded chitosan-PLGA (poly lactic-co-glycolic acid) nanoparticles without skin pre-treatment to preserve skin integrity. The impact of formulation composition i.

View Article and Find Full Text PDF

Cell-mediated transport of therapeutics has emerged as promising alternative to classical drug delivery approaches. To preserve viability and functions of carrier cells, encapsulation of active drugs in protective nanoparticles or the use of inducible therapeutics has been proposed. Here, we compared the effects of novel polymeric formulations of an active and a stimulus-sensitive anti-cancer drug on human T lymphocytes to identify suitable drug preparations for cell-mediated drug delivery.

View Article and Find Full Text PDF

Purpose: To evaluate different dissolution testing methods and subsequently develop a simple to perform but reproducible and discriminating dissolution technique for inhalative powders.

Methods: From a dry powder a fraction of aerosolized particles with an aerodynamic particle size below 5 μm was collected on regenerated cellulose membranes using an abbreviated Andersen cascade impactor. The membrane was then transferred to the respective dissolution set up either paddle apparatus with membrane holder, flow through cell or Franz diffusion cell.

View Article and Find Full Text PDF

Various polycationic vehicles have been developed to facilitate the transfer of foreign DNA into mammalian cells. Structure-activity studies suggested that biophysical properties, such as size, charge, and morphology of the resulting DNA complexes determine transfection efficiency within one class of vector. To investigate the general validity of these criteria, we studied the efficacy of a variety of DNA delivery vehicles including liposomes (DOTAP, SAINT2) with and without helper lipid (DOPE), the polymer polyethyleneimine (PEI), and cationic nanoparticles (Si26H, PLGA/chitosan) in a comparative manner.

View Article and Find Full Text PDF

Background: The functional response of isolated alveolar epithelial cells (AECs) to ischemia/reperfusion injury (I/R) is incompletely understood. Using a cell culture model, we investigated the tolerance of human type II alveolar cells (ATII) to hypoxia and subsequent reoxygenation.

Methods: Cell cultures of A549 cells (human lung adenocarcinoma) and primary ATII were incubated in 95% N(2)/5% CO(2) saturated medium at 37 degrees C for 48 hours or 72 hours.

View Article and Find Full Text PDF

Investigations to determine pH profiles across human stratum corneum (SC), in vivo as well as in vitro, were carried out using the tape stripping technique and a flat surface pH electrode. This method was extended to the deeper skin layers (=viable epidermis+dermis; DSL) in vitro. Statistically significant changes in the pH values were detected in the SC between in vivo and in vitro investigations and also between male and female skin in vivo.

View Article and Find Full Text PDF