This meeting report presents the 2022 Annual Meeting of the cluster for Integrative Structural Biology at the University of Copenhagen (ISBUC) and discusses the cluster approach to interdisciplinary research management. This approach successfully facilitates cross-faculty and inter-departmental collaboration. Innovative integrative research collaborations ignited by ISBUC, as well as research presented at the meeting, are showcased.
View Article and Find Full Text PDFThe dopamine transporter (DAT) is a member of the neurotransmitter:sodium symporter (NSS) family, mediating the sodium-driven reuptake of dopamine from the extracellular space thereby terminating dopaminergic neurotransmission. Our current structural understanding of DAT is derived from the resolutions of DAT from (dDAT). Despite extensive structural studies of purified dDAT in complex with a variety of antidepressants, psychostimulants and its endogenous substrate, dopamine, the molecular pharmacology of purified, full length dDAT is yet to be elucidated.
View Article and Find Full Text PDFNeurotransmitter transporters (NTTs) are involved in the fine-tuning of brain neurotransmitter homeostasis. As such, they are implicated in a plethora of complex behaviors, including reward, movement, and cognition. During recent decades, compounds that modulate NTT functions have been developed.
View Article and Find Full Text PDFThe serotonin transporter (SERT) is the primary target for antidepressant drugs. The existence of a high affinity primary orthosteric binding site (S1) and a low affinity secondary site (S2) has been described, and their relation to antidepressant pharmacology has been debated. Herein, structural modifications to the N, 4, 5, and 4' positions of (±)citalopram (1) are reported.
View Article and Find Full Text PDFPsychopharmacology (Berl)
August 2012
Rationale: Several studies suggest a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. However, the NPY receptors mediating addiction-related effects remain to be determined.
Objectives: To explore the potential role of Y5 NPY receptors in cocaine-induced behavioural effects.
Novel fluorescent ligands were synthesized to identify a high-affinity probe that would enable visualization of the dopamine transporter (DAT) in living cells. Fluorescent tags were extended from the N- or 2-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane, using an ethylamino linker. The resulting 2-substituted (5) and N-substituted (9) rhodamine-labeled ligands provided the highest DAT binding affinities expressed in COS-7 cells (Ki= 27 and 18 nM, respectively) in the series.
View Article and Find Full Text PDFThe extracellular concentration of the neurotransmitters dopamine, serotonin, norepinephrine, GABA and glycine is tightly controlled by plasma membrane transporters belonging to the SLC6 gene family. A very large number of putative transport proteins with a remarkable homology to the SLC6 transporters has recently been identified in prokaryotes. Here we have probed structural relationships in a 'microdoman' corresponding to the extracellular ends of transmembrane segments (TM) 7 and 8 in one of these homologs, the tryptophan transporter TnaT from Symbiobacterium thermophilum.
View Article and Find Full Text PDFThe biogenic amine transporters belong to the class of Na+/Cl--coupled solute carriers and include the transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT). These transporters are the primary targets for the action of many psychoactive compounds including the most commonly used antidepressants as well as widely abused drugs such as cocaine and amphetamines. In spite of their pharmacological importance, still little is known about their higher structural organization and the molecular mechanisms underlying the substrate translocation process.
View Article and Find Full Text PDFRecently we showed evidence that mutation of Tyr-335 to Ala (Y335A) in the human dopamine transporter (hDAT) alters the conformational equilibrium of the transport cycle. Here, by substituting, one at a time, 16 different bulky or charged intracellular residues, we identify three residues, Lys-264, Asp-345, and Asp-436, the mutation of which to alanine produces a phenotype similar to that of Y335A. Like Y335A, the mutants (K264A, D345A, and D436A) were characterized by low uptake capacity that was potentiated by Zn(2+).
View Article and Find Full Text PDFPreviously we obtained evidence based on engineering of Zn2+ binding sites that the extracellular parts of transmembrane segment 7 (TM7) and TM8 in the human dopamine transporter are important for transporter function. To further evaluate the role of this domain, we have employed the substituted cysteine accessibility method and performed 10 single cysteine substitutions at the extracellular ends of TM7 and TM8. The mutants were made in background mutants of the human dopamine transporter with either two (E2C) or five endogenous cysteines substituted (X5C) that render the transporter largely insensitive to cysteine modification.
View Article and Find Full Text PDFThe structural basis of phosphorylation and its putative role in internalization were investigated in the human dopamine transporter (hDAT). Activation of protein kinase C (PKC) was achieved either directly by treatment with 4-alpha-phorbol 12-myristate 13-acetate (PMA) or by activating the Galpha(q)-coupled human substance P receptor (hNK-1) co-expressed with hDAT in HEK293 cells and in N2A neuroblastoma cells. In both cell lines, activation of the hNK-1 receptor by substance P reduced the V(max) for [(3)H]dopamine uptake to the same degree as did PMA ( approximately 50 and approximately 20% in HEK293 and N2A cells, respectively).
View Article and Find Full Text PDFBinding of Zn(2+) to the endogenous Zn(2+) binding site in the human dopamine transporter leads to potent inhibition of [(3)H]dopamine uptake. Here we show that mutation of an intracellular tyrosine to alanine (Y335A) converts this inhibitory Zn(2+) switch into an activating Zn(2+) switch, allowing Zn(2+)-dependent activation of the transporter. The tyrosine is part of a conserved YXX Phi trafficking motif (X is any residue and Phi is a residue with a bulky hydrophobic group), but Y335A did not show alterations in surface targeting or protein kinase C-mediated internalization.
View Article and Find Full Text PDF