Eur J Mass Spectrom (Chichester)
October 2015
The fragmentation of oxazine 170, a rhodamine-type dye, has been investigated by means of collisions and photodissociation with visible and ultraviolet radiation in a Fourier transform ion cyclotron resonance mass spectrometer. Because of an improved experimental setup, the photodissociation processes of stored ions are measured with high intensity with respect to the absorbed photons. By isotope labelling and quantum chemical calculations, the various fragmentation mechanisms are investigated.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
December 2013
The fragmentation reactions of Rhodamine B have been investigated by the use of electrospray ionization mass spectra in a high mass resolving ion cyclotron resonance mass spectrometer. Using high resolution, it could be shown that the loss of 44 mass units from the molecular ion is due to propane; the measured masses were inconsistent with loss of carbon dioxide. These conclusions are supported using deuterium-labeled Rhodamine B.
View Article and Find Full Text PDF