Publications by authors named "Claus C Fuglsang"

Microdochium nivale carbohydrate oxidase was produced by heterologous recombinant expression in Aspergillus oryzae, purified and crystallized. The enzyme crystallizes with varying crystal morphologies depending on the crystallization conditions. Several different crystal forms were obtained using the hanging-drop vapour-diffusion method, two of which were used for diffraction measurements.

View Article and Find Full Text PDF

The interactions of sodium dodecyl sulfate (SDS) and two glyco-variants of the enzyme phytase from Peniophora lycii were investigated. One variant (Phy) was heavily glycosylated while the other (dgPhy) was enzymatically deglycosylated. Effects at 24 degrees C of titrating SDS to Phy and dgPhy were studied by Isothermal Titration Calorimetry (ITC) and Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy.

View Article and Find Full Text PDF

The kinetics of thermally induced aggregation of the glycoprotein Peniophora lycii phytase (Phy) and a deglycosylated form (dgPhy) was studied by dynamic (DLS) and static (SLS) light scattering. This provided a detailed insight into the time course of the formation of small aggregates ( approximately 10-100 molecules) of the enzyme. The thermodynamic stability of the two forms was also investigated using scanning calorimetry (DSC).

View Article and Find Full Text PDF

Glycosylation, the most prevalent post-translational modification of proteins, affects a number of physical properties including the interactions with the surrounding aqueous solvent. Such glycan-water interactions have been discussed with respect to the increased solubility generally observed for glycoproteins, but experimental support of this correlation remains sparse. We have applied a two-channel calorimetric method to measure the free energy and enthalpy of hydration at 25 degrees C for the glycoprotein phytase (Phy) and a deglycosylated form (dgPhy) of the same protein.

View Article and Find Full Text PDF

Thielavia terrestris is a soil-borne thermophilic fungus whose molecular/ cellular biology is poorly understood. Only a few genes have been cloned from the Thielavia genus. We detected an extracellular glucoamylase in culture filtrates of T.

View Article and Find Full Text PDF

The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where crystallographic studies have identified the existence of three calcium binding sites in the structure. Denaturation of BHA is irreversible with a T(m) of approximately 89 degrees C and DSC thermograms can be described using a one-step irreversible model.

View Article and Find Full Text PDF

Regulation of hydration behavior, and the concomitant effects on solubility and other properties, has been suggested as a main function of protein glycosylation. In this work, we have studied the hydration of the heavily glycosylated Peniophora lycii phytase in solutions (0.15-1.

View Article and Find Full Text PDF

The effect of temperature and calcium ions on the denaturation of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been studied using calorimetry. It was found that thermal inactivation of BHA is irreversible and that calcium ions have a significant effect on stability. Thus an apparent denaturation temperature ( T (d)) of 83 degrees C in the presence of excess calcium ions was observed, whereas T (d) decreased to 48 degrees C when calcium was removed.

View Article and Find Full Text PDF

Determination of binding parameters for metal ion binding to proteins usually requires preceding steps to remove protein-bound metal ions. Removal of bound metal ions from protein is often associated with decreased stability and inactivation. We present two simple isothermal titration calorimetric procedures that eliminate separate metal ion removal steps and directly monitor the exchange of metal ions between buffer, protein, and chelator.

View Article and Find Full Text PDF

The effective catalytic properties of enzymes have already promoted their introduction into several industrial products and processes. Recent developments in biotechnology, particularly in areas such as protein engineering and directed evolution, have provided important tools for the efficient development of new enzymes. This has resulted in the development of enzymes with improved properties for established technical applications and in the production of new enzymes tailor-made for entirely new areas of application where enzymes have not previously been used.

View Article and Find Full Text PDF