Introduction: Salicylic acid has shown promise in alleviating water stress in cultivated plants. However, there is a lack of studies confirming its effectiveness in cowpea plants grown in field conditions. Therefore, this research aimed to evaluate the use of salicylic acid as a water stress mitigator in cowpea cultivars under different irrigation depths in field conditions.
View Article and Find Full Text PDFPlant endogenous mechanisms are not always sufficient enough to mitigate drought stress, therefore, the exogenous application of elicitors, such as salicylic acid, is necessary. In this study, we assessed the mitigating action of salicylic acid (SA) in cowpea genotypes under drought conditions. An experiment was conducted with two cowpea genotypes and six treatments of drought stress and salicylic acid (T1 = Control, T2 = drought stress (stress), T3 = stress + 0.
View Article and Find Full Text PDFGlobal climate changes have intensified water stress in arid and semi-arid regions, reducing plant growth and yield. In this scenario, the present study aimed to evaluate the mitigating action of salicylic acid and methionine in cowpea cultivars under water restriction conditions. An experiment was conducted in a completely randomized design with treatments set up in a 2 × 5 factorial arrangement corresponding to two cowpea cultivars (BRS Novaera and BRS Pajeú) and five treatments of water replenishment, salicylic acid, and methionine.
View Article and Find Full Text PDFCowpea is the main subsistence crop-protein source-for the Brazilian semi-arid region. The use of salt-stress-tolerant varieties can improve crop yields. We evaluated the effect of irrigation with brackish water on the growth, photosynthetic responses, production, and tolerance of fifteen traditional varieties of cowpea.
View Article and Find Full Text PDFPlant Cell Rep
January 2008
Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment.
View Article and Find Full Text PDF