Background: Computed tomography pulmonary angiography (CTPA) is frequently performed in patients with pulmonary hypertension (PH) and may aid non-invasive estimation of pulmonary hemodynamics. We, therefore, investigated automated volumetry of intrapulmonary vasculature on CTPA, separated into core and peel fractions of the lung volume and its potential to differentially reflect pulmonary hemodynamics in patients with pre- and postcapillary PH.
Methods: A retrospective case-control study of 72 consecutive patients with PH according to the 2022 joint guidelines of the European Society of Cardiology and the European Respiratory Society who underwent right heart catheterization (RHC) and CTPA within 7 days between August 2013 and February 2016 at Thoraxklinik at Heidelberg University Hospital (Heidelberg, Germany) was conducted.
We assessed the effects of structured reporting (SR) of lower extremity CT angiography (CTA) on report quality and workflow efficiency compared with conventional reports (CR). Surveys were conducted at an academic radiology department before and after the introduction of an SR template. Participants ( = 39, 21) rated report quality and report creation effort (1: very dissatisfied/low to 10: very satisfied/high) and whether SR represents an improvement over CR (1: completely disagree to 5: completely agree).
View Article and Find Full Text PDFPurpose: To evaluate the prediction of vertebral fractures in plasma cell dyscrasias using dual-layer CT (DLCT) with quantitative assessment of conventional CT image data (CI), calcium suppressed image data (CaSupp), and calculation of virtual calcium-only (VCa) image data.
Material And Methods: Patients ( = 81) with the diagnosis of a plasma cell dyscrasia and whole-body DLCT at the time of diagnosis and follow-up were retrospectively enrolled. CI, CaSupp25, and CaSupp100 were quantitatively analyzed using regions of interest in the lumbar vertebral bodies and fractured vertebral bodies on baseline or follow-up imaging.
Reduced iodine loads for computed tomography (CT)-based vascular assessment prior to transcatheter aortic valve implantation (TAVI) may be feasible in conjunction with a spectral detector CT scanner. This prospective single-center study considered 100 consecutive patients clinically referred for pre-TAVI CT. They were examined on a dual-layer detector CT scanner to obtain an ECG-gated cardiac scan and a non-ECG-gated aortoiliofemoral scan.
View Article and Find Full Text PDFObjectives: A prospective, multi-centre study to evaluate concordance of morphologic lung MRI and CT in chronic obstructive pulmonary disease (COPD) phenotyping for airway disease and emphysema.
Methods: A total of 601 participants with COPD from 15 sites underwent same-day morpho-functional chest MRI and paired inspiratory-expiratory CT. Two readers systematically scored bronchial wall thickening, bronchiectasis, centrilobular nodules, air trapping and lung parenchyma defects in each lung lobe and determined COPD phenotype.
Purpose: To assess the diagnostic accuracy of BMI-adapted, low-radiation and low-iodine dose, dual-source aortic CT for endoleak detection in non-obese and obese patients following endovascular aortic repair.
Methods: In this prospective single-center study, patients referred for follow-up CT after endovascular repair with a history of at least one standard triphasic (native, arterial and delayed phase) routine CT protocol were enrolled. Patients were divided into two groups and allocated to a BMI-adapted (group A, BMI < 30 kg/m; group B, BMI ≥ 30 kg/m) double low-dose CT (DLCT) protocol comprising single-energy arterial and dual-energy delayed phase series with virtual non-contrast (VNC) reconstructions.
Objectives: To evaluate the prognostic value of fully automatic lung quantification based on spectral computed tomography (CT) and laboratory parameters for combined outcome prediction in COVID-19 pneumonia.
Methods: CT images of 53 hospitalized COVID-19 patients including virtual monochromatic reconstructions at 40-140keV were analyzed using a fully automated software system. Quantitative CT (QCT) parameters including mean and percentiles of lung density, fibrosis index (FIBI-700, defined as the percentage of segmented lung voxels ≥-700 HU), quantification of ground-glass opacities and well-aerated lung areas were analyzed.
The purpose of this study was to prospectively analyse image quality and radiation dose of body mass index (BMI)-adapted low-radiation and low-iodine dose CTA of the thoracoabdominal aorta in obese and non-obese patients. This prospective, single-centre study included patients scheduled for aortic CTA between November 2017 and August 2020 without symptoms of high-grade heart failure. A BMI-adapted protocol was used: Group A/Group B, BMI < 30/≥ 30 kg/m2, tube potential 80/100 kVp, total iodine dose 14.
View Article and Find Full Text PDFObjectives: To assess diagnostic accuracy of automated 3D volumetry of cardiac chambers based on computed tomography pulmonary angiography (CTPA) for the differentiation of pulmonary hypertension due to left heart disease (group 2 PH) from non-group 2 PH compared to manual diameter measurements.
Methods: Patients with confirmed PH undergoing right heart catheterisation and CTPA within 100 days for diagnostic workup of PH between August 2013 and February 2016 were included in this retrospective, single-centre study. Automated 3D segmentation of left atrium, left ventricle, right atrium and right ventricle (LA/LV/RA/RV) was performed by two independent and blinded radiologists using commercial software.
Noninvasive tests for pulmonary hypertension (PH) are needed to help select patients for diagnostic right heart catheterization (RHC). CT pulmonary angiography (CTPA) is commonly performed for suspected PH. The purpose of this study was to assess the utility of CTPA-based cardiac chamber volumetric measurements for the diagnosis of PH in comparison with echocardiographic and conventional CTPA parameters, with the 2018 updated hemodynamic definition used as reference.
View Article and Find Full Text PDFBackground: Increases in pressure in the pulmonary arteries or pulmonary veins may be the result of a variety of underlying diseases. Noninvasive imaging plays a crucial role not only for identification, but also for differential diagnosis.
Objectives: This article provides a comparative review of the signs of increased pulmonary arterial and pulmonary venous pressure in chest X‑ray and computed tomography (CT).
Background: New radiation protection regulation encompassing additional obligations for monitoring, reporting and recording of radiation exposure, was enacted on December 31, 2018. As a consequence, dose management systems (DMS) are necessary to fulfill the requirements. The process of selection, acquisition and implementation of a suitable IT solution for this purpose is a challenge that all X-ray-applying facilities, including hospitals and private practices, are currently facing.
View Article and Find Full Text PDFWith the advent of multidetector computed tomography (CT), CT angiography (CTA) has gained widespread popularity for noninvasive imaging of the arterial vasculature. Peripheral extremity CTA can nowadays be performed rapidly with high spatial resolution and a decreased amount of both intravenous contrast and radiation exposure. In patients with peripheral artery disease (PAD), this technique can be used to delineate the bilateral lower extremity arterial tree and to determine the amount of atherosclerotic disease while differentiating between acute and chronic changes.
View Article and Find Full Text PDFPurpose: To evaluate dual-energy CT (DE) and dedicated metal artifact reduction algorithms (iMAR) during CT-guided biopsy in comparison to single-energy CT (SE).
Methods: A trocar was placed in the liver of six pigs. CT acquisitions were performed with SE and dose equivalent DE at four dose levels(1.
To compare image quality between filtered back projection (FBP) and iterative reconstruction algorithm and dedicated metal artifact reduction (iMAR) algorithms during antenna positioning for computed tomography-guided microwave ablation (MWA). An MWA antenna was positioned in the liver of five pigs under CT guidance. Different exposure settings (120kV/200mAs-120kV/50mAs) and image reconstruction techniques (FBP, iterative reconstruction with and without iMAR) were applied.
View Article and Find Full Text PDFObjectives: The aim of this study was to establish an objective segmentation-based evaluation of metal artifact reduction algorithms in the context of percutaneous microwave ablation in a porcine model.
Materials And Methods: Five computed tomography acquisitions from a previous animal study on computed tomography-guided percutaneous applicator positioning for microwave antenna were reconstructed with 6 different algorithms (30 image series total): standard filtered backprojection (B30f) and iterative reconstruction (ADMIRE-I30-1, ADMIRE-I30-3), all with and without metal artifact reduction. For artifact quantification, 3-dimensional segmentation of liver parenchyma without visible artifacts (VLiverReference) and liver volume surrounding the antenna (VLiverVOI) was performed, determining thresholds for artifact segmentation and calculating volume of voxels influenced by artifacts.
Objectives: To assess the diagnostic accuracy of automated 3D volumetry of central pulmonary arteries using computed tomography pulmonary angiography (CTPA) for suspected pulmonary hypertension alone and in combination with echocardiography.
Methods: This retrospective diagnostic accuracy study included 70 patients (mean age 66.7, 48 female) assessed for pulmonary hypertension by CTPA and transthoracic echocardiography with estimation of the pulmonary arterial systolic pressure (PASP).
Int J Cardiovasc Imaging
August 2019
Pulmonary hypertension (PH) is a pathophysiological disorder defined by an increase in pulmonary arterial pressure which can occur in multiple clinical conditions. Irrespective of etiology, PH entails a negative impact on exercise capacity and quality of life, and is associated with high mortality particularly in pulmonary arterial hypertension. Noninvasive imaging techniques play an important role in suggesting the presence of PH, providing noninvasive pulmonary pressure measurements, classifying the group of PH, identifying a possibly underlying disease, providing prognostic information and assessing response to treatment.
View Article and Find Full Text PDFExternal beam radiotherapy (EBRT) with carbon ions and endoradiotherapy using radiolabeled tumor targeting agents are emerging concepts in precision cancer therapy. We report on combination effects of these two promising strategies. Tumor targeting I-labelled anti-EGFR-antibody (Cetuximab) was used in the prototypic EGFR-expressing A431 human squamous cell carcinoma xenograft model.
View Article and Find Full Text PDFPurpose: To demonstrate feasibility of automated 3D volumetry of central pulmonary arteries based on magnetic resonance angiography (MRA), to assess pulmonary artery volumes in patients with pulmonary hypertension compared to healthy controls, and to investigate the potential of the technique for predicting pulmonary hypertension.
Methods: MRA of pulmonary arteries was acquired at 1.5T in 20 patients with pulmonary arterial hypertension and 21 healthy normotensive controls.
Background: The lack of sensitive biocompatible particle track detectors has so far limited parallel detection of physical energy deposition and biological response. Fluorescent nuclear track detectors (FNTDs) based on Al₂O₃:C,Mg single crystals combined with confocal laser scanning microscopy (CLSM) provide 3D information on ion tracks with a resolution limited by light diffraction. Here we report the development of next generation cell-fluorescent ion track hybrid detectors (Cell-Fit-HD).
View Article and Find Full Text PDF