Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.
View Article and Find Full Text PDFIn this work, we report the synthesis of calcium phosphate-chitosan composite layers. Calcium phosphate layers were deposited on titanium substrates by radio-frequency magnetron sputtering technique by varying the substrate temperature from room temperature (25 °C) up to 100 and 300 °C. Further, chitosan was deposited by matrix-assisted pulsed laser evaporation technique on the calcium phosphate layers.
View Article and Find Full Text PDFAnode modification with carbon nanomaterials is an important strategy for the improvement of microbial fuel cell (MFC) performance. The presence of nitrogen in the carbon network, introduced as active nitrogen functional groups, is considered beneficial for anode modification. In this aim, nitrogen-containing carbon nanostructures (NCNs) with different morphologies were obtained via carbonization of polyaniline and were further investigated as anode modifiers in MFCs.
View Article and Find Full Text PDFDirect current (DC) and radio frequency (RF) magnetron sputtering methods were selected for conducting the deposition of structural materials, namely ceramic and metallic co-depositions. A total of six configurations were deposited: single thin layers of oxides (CrO, SiO) and co-deposition configurations (50:50 wt.%) as structural materials (W, Be)-(CrO, SiO), all deposited on 304L stainless steel (SS).
View Article and Find Full Text PDFThe deposition of a ferromagnetic layer can affect the properties of high-temperature superconductors underneath. We investigated the influence of ferromagnetic CaRuO on the properties of YBaCuO (YBCO) superconducting thin films when the layers are either in direct contact or separated by a barrier layer of 5 nm SrTiO. Detailed measurements of the magnetic moment of the superconductor and ferromagnet as a function of temperature and magnetic field have been performed using SQUID magnetometry.
View Article and Find Full Text PDFAuFe nanophase thin films of different compositions and thicknesses were prepared by co-deposition magnetron sputtering. Complex morpho-structural and magnetic investigations of the films were performed by X-ray Diffraction, cross-section Transmission Electron Microscopy, Selected Area Electron Diffraction, Magneto Optical Kerr Effect, Superconducting Quantum Interference Device magnetometry and Conversion Electron Mössbauer Spectroscopy. It was proven that depending on the preparation conditions, different configurations of defect α-Fe magnetic clusters, i.
View Article and Find Full Text PDFIn the present study, the synthesis of titanium nitride (TiN) by carbothermal reduction nitridation (CRN) reaction using nanocomposites made of mesoporous TiO/acrylonitrile with different content of inorganic phase were explored. The choice of hybrid nanocomposite as precursor for the synthesis of TiN was made due to the possibility of having an intimate interface between the organic and inorganic phases in the mixture that can favours CRN reaction. Subsequently, the hybrid composites have been subjected to four-step thermal treatments at 290 °C, 550 °C, 1000 °C and 1400 °C under nitrogen atmosphere.
View Article and Find Full Text PDFWe report the facile and low-cost preparation as well as detailed characterization of dense arrays of passivated ferromagnetic nickel (Ni) nanotubes (NTs) vertically-supported onto solid Au-coated Si substrates. The proposed fabrication method relies on electrochemical synthesis within the nanopores of a supported anodic aluminum oxide (AAO) template and allows for fine tuning of the NTs ferromagnetic walls just by changing the cathodic reduction potential during the nanostructures' electrochemical growth. Subsequently, the experimental platform allowed further passivation of the Ni NTs with the formation of ultra-thin antiferromagnetic layers of nickel oxide (NiO).
View Article and Find Full Text PDF