Publications by authors named "Claudio Zippenfennig"

Background: This exploratory study aimed to investigate the extent to which mechanical properties of the plantar skin and superficial soft tissue (hardness, stiffness, and thickness) and vibration perception thresholds (VPTs) predict plantar pressure loading during gait in people with diabetes compared to healthy controls.

Methods: Mechanical properties, VPTs, and plantar loadings during gait at the heel and first metatarsal head (MTH) of 20 subjects with diabetes, 13 with DPN, and 33 healthy controls were acquired. Multiple regression analyses were used to predict plantar pressure peaks and pressure-time integrals at both locations based on the mechanical properties of the skin and superficial soft tissues and VPTs.

View Article and Find Full Text PDF

In humans, plantar cutaneous mechanoreceptors provide critical input signals for postural control during walking and running. Because these receptors are located within the dermis, the mechanical properties of the overlying epidermis likely affect the transmission of external stimuli. Epidermal layers are highly adaptable and can form hard and thick protective calluses, but their effects on plantar sensitivity are currently disputed.

View Article and Find Full Text PDF

Subliminal electrical noise (SEN) enhances sensitivity in healthy individuals of various ages. Diabetes and its neurodegenerative profile, such as marked decreases in foot sensitivity, highlights the potential benefits of SEN in such populations. Accordingly, this study aimed to investigate the effect of SEN on vibration sensitivity in diabetes.

View Article and Find Full Text PDF

Diabetes mellitus is one of the most frequent diseases in the general population. Electrical stimulation is a treatment modality based on the transmission of electrical pulses into the body that has been widely used for improving wound healing and for managing acute and chronic pain. Here, we discuss recent advancements in electroceuticals and haptic/smart devices for quality of life and present in which patients and how electrical stimulation may prove to be useful for the treatment of diabetes-related complications.

View Article and Find Full Text PDF

Determining vibration perception thresholds (VPT) is a central concern of clinical research and science to assess the somatosensory capacity of humans. The response of different mechanoreceptors to an increasing contact force has rarely been studied. We hypothesize that increasing contact force leads to a decrease in VPTs of fast-adapting mechanoreceptors in the sole of the human foot.

View Article and Find Full Text PDF

Recent studies demonstrate neuropathic changes with respect to vibration sensitivity for different measurement frequencies. This study investigates the relationship between vibration perception thresholds (VPTs) at low and high frequencies at two plantar locations and diabetic peripheral neuropathy (DPN) severity in diabetes mellitus (DM) subjects with DPN. We examine differences of VPTs between participants with DM, with DPN, as well as healthy controls.

View Article and Find Full Text PDF

Mechanical skin properties (MSPs) and vibration perception thresholds (VPTs) show no relationship in healthy subjects. Similar results were expected when comparing MSP and VPT in individuals with diabetes mellitus (DM) and with diabetic (peripheral-)neuropathy (DPN). A healthy control group (33 CG), 20 DM and 13 DPN participated in this cross-sectional study.

View Article and Find Full Text PDF

Until relatively recently, humans, similar to other animals, were habitually barefoot. Therefore, the soles of our feet were the only direct contact between the body and the ground when walking. There is indirect evidence that footwear such as sandals and moccasins were first invented within the past 40 thousand years, the oldest recovered footwear dates to eight thousand years ago and inexpensive shoes with cushioned heels were not developed until the Industrial Revolution.

View Article and Find Full Text PDF

Objective: Deterioration of cutaneous perception may be one reason for the increased rate of falling in the elderly. The stochastic resonance phenomenon may compensate this loss of information by improving the capability to detect and transfer weak signals. In the present study, we hypothesize that subliminal electrical and mechanical noise applied to the sole of the foot of healthy elderly subjects improves vibration perception thresholds (VPT).

View Article and Find Full Text PDF