We consider a nematic liquid crystal film confined to a flat cell with homeotropic and planar patterned hybrid anchoring and show, using Monte Carlo simulations, the possibility of the system to stabilize line and point defects. The planar anchoring surface is patterned with a chessboardlike grid of squares with alternating random or parallel homogeneous planar anchoring. The simulations show only line defects when the individual domains are small enough, but also point defects when the domain size is significantly larger than the sample thickness.
View Article and Find Full Text PDFDNA oligomers in solution have been found to develop liquid crystal phases via a hierarchical process that involves Watson-Crick base pairing, supramolecular assembly into columns of duplexes, and long-range ordering. The multiscale nature of this phenomenon makes it difficult to quantitatively describe and assess the importance of the various contributions, particularly for very short strands. We performed molecular dynamics simulations based on the coarse-grained oxDNA model, aiming to depict all of the assembly processes involved and the phase behavior of solutions of the DNA GCCG tetramers.
View Article and Find Full Text PDFWe investigate main-chain liquid crystal elastomers (LCEs) formed by photoresponsive azobenzene units with different populations of and conformers (from fully to fully ). We study their macroscopic properties as well as their molecular organization using extensive Monte Carlo simulations of a simple coarse-grained model where the and conformers are represented by soft-core biaxial Gay-Berne particles with size and interaction energy parameters obtained by fitting a bare bone azobenzene moiety represented at atomistic level. We find that increasing the fraction of conformers, as could be obtained by near-UV irradiation, shifts the nematic-isotropic transition to a lower temperature, consistently with experiment, while generating internal stress in a clamped sample.
View Article and Find Full Text PDFChirality, as a concept, is well understood at most length scales. However, quantitative models predicting the efficacy of the transmission of chirality across length scales are lacking. We propose here a modus operandi for a chiral nanoshape solute in an achiral nematic liquid crystal host showing that that chirality transfer may be understood by unusually simple geometric considerations.
View Article and Find Full Text PDFWe present a perspective on several current research directions relevant to the mathematical design of new materials. We discuss: (i) design problems for phase-transforming and shape-morphing materials, (ii) epitaxy as an approach of central importance in the design of advanced semiconductor materials, (iii) selected design problems in soft matter, (iv) mathematical problems in magnetic materials, (v) some open problems in liquid crystals and soft materials and (vi) mathematical problems on liquid crystal colloids. The presentation combines topics from soft and hard condensed matter, with specific focus on those design themes where mathematical approaches could possibly lead to exciting progress.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2021
We revisited the nematic-isotropic (NI) transition of the Lebwohl-Lasher lattice model with a detailed investigation of samples containing 200 × 200 × 200 particles. The large-scale Monte Carlo (MC) simulations involved were carried out following the standard Metropolis, as well as the cluster MC Wolff algorithms. A notable free-energy barrier was observed between the isotropic and nematic phase, leading to long-lived metastable states and hysteresis.
View Article and Find Full Text PDFWe present a Monte Carlo study of the effects of elastic anisotropy on the topological defects which can be formed in nematic films with hybrid boundary conditions. We simulate the polarized microscopy images and analyze their evolution in uniaxial systems for different values of the Frank elastic constants.
View Article and Find Full Text PDFWe have studied nematic hybrid films with homeotropic alignment at the top surface and various controlled degrees of in plane ordering, going from a random degenerate organization to a completely uniform alignment along one direction, at the bottom one. We show, by Monte Carlo (MC) computer simulations and experiments on photopatterned films with the bottom support surface fabricated with in-plane order similar to the simulated ones, that the point defects observed in the case of random planar orientations at the bottom tend to arrange along a filament as the surface ordering is sufficiently increased. MC simulations complement the polarized microscopy texture observations allowing to inspect the 3D structure of the defects and examine the role of elastic constants.
View Article and Find Full Text PDFWe describe the development and implementation of a coarse grained (CG) modelling approach where complex organic molecules, and particularly the π-conjugated ones often employed in organic electronics, are modelled in terms of connected sets of attractive-repulsive biaxial Gay-Berne ellipsoidal beads. The CG model is aimed at reproducing realistically large scale morphologies (e.g.
View Article and Find Full Text PDFWe have used state-of-the-art ab initio restricted active RASPT2 computations using a 16 orbitals, 18 electrons active space to produce an extended three-dimensional map of the potential energy surfaces (PESs) of the ground and first nπ* excited states of azobenzene along CNNC torsion and the two CNN bending angles, which are the most relevant coordinates for the trans-cis photoisomerization process. Through comparison with fully unconstrained optimizations performed at the same level of theory, we show that the three selected coordinates suffice to correctly describe the photoisomerization mechanism and the S-S crossing seam. We also provide a map of the nonadiabatic coupling between the two states in the region where they get closer in energy.
View Article and Find Full Text PDFThe creation and transmission of chirality in molecular systems is a well-known, widely applied notion. Our understanding of how the chirality of nanomaterials can be controlled, measured, transmitted through space, and applied is less well understood. Dynamic assemblies for chiral sensing or metamaterials engineered from chiral nanomaterials require exact methods to determine transmission and amplification of nanomaterial chirality through space.
View Article and Find Full Text PDFAmong the movements observed in some cellulosic structures produced by plants are those that involve the dispersion and burial of seeds, as for example in Erodium from the Geraniaceae plant family. Here we report on a simple and efficient strategy to isolate and tune cellulose-based hygroscopic responsive materials from Erodium awns' dead tissues. The stimuli-responsive material isolated forms left-handed (L) or right-handed (R) helical birefringent transparent ribbons in the wet state that reversibly change to R helices when the material dries.
View Article and Find Full Text PDFUnderstanding and controlling the growth of organic crystals deposited from the vapor phase is important for fundamental materials science and necessary for applications in pharmaceutical and organic electronics industries. Here, this process is studied for the paradigmatic case of pentacene on silica by means of a specifically tailored computational approach inspired by the experimental vapor deposition process. This scheme is able to reproduce the early stages of the thin-film formation, characterized by a quasi layer-by-layer growth, thus showcasing its potential as a tool complementary to experimental techniques for investigating organic crystals.
View Article and Find Full Text PDFInduction, transmission, and manipulation of chirality in molecular systems are well known, widely applied concepts. However, our understanding of how chirality of nanoscale entities can be controlled, measured, and transmitted to the environment is considerably lacking behind. Future discoveries of dynamic assemblies engineered from chiral nanomaterials, with a specific focus on shape and size effects, require exact methods to assess transmission and amplification of nanoscale chirality through space.
View Article and Find Full Text PDFWe have studied liquid crystal phases formed by fullerenes functionalized with mesogenic groups yielding a cone-shaped molecular structure. We have modelled these shuttlecock-like molecules with a set of Gay-Berne particles grafted with flexible springs to a spherical core and we have studied, using Monte Carlo simulations, their phase organization, also with a view to examining their possible use as candidate organic photovoltaic materials. We have found that, upon cooling from the isotropic phase, the system forms a columnar phase, like in the experimental work of Kato and coworkers [T.
View Article and Find Full Text PDFWe have investigated the possibility of extending the stability range of the biaxial nematic phase by adding an off-centre dipole of various strengths and orientations to elongated biaxial Gay-Berne (GB) mesogens yielding a relatively narrow biaxial nematic (N) phase, and a smectic (S) phase when dipole-less. The effect of dipoles is not easy to predict, and our previous investigations have shown the limited benefits of having a central dipole. Here we show, employing molecular dynamics (MD) simulations, that a not too strong off-centre dipole positioned along the longest axis of the nematogen can extend the temperature range of stability of the biaxial nematic phase, also shifting it towards lower temperatures.
View Article and Find Full Text PDFWe present a computational approach to model hole transport in an amorphous semiconducting fluorene-triphenylamine copolymer (TFB), which is based on the combination of molecular dynamics to predict the morphology of the oligomeric system and Kinetic Monte Carlo (KMC), parameterized with quantum chemistry calculations, to simulate hole transport. Carrying out a systematic comparison with available experimental results, we discuss the role that different transport parameters play in the KMC simulation and in particular the dynamic nature of positional and energetic disorder on the temperature and electric field dependence of charge mobility. It emerges that a semi-quantitative agreement with experiments is found only when the dynamic nature of the disorder is taken into account.
View Article and Find Full Text PDFWe have studied, using atomistic molecular dynamics simulations, the alignment of the nematic liquid-crystal 4-n-pentyl-4'-cyanobiphenyl (5CB) on self-assembled monolayers (SAMs) formed from octadecyl- and/or hexyltrichlorosilane (OTS and HTS) attached to glassy silica. We find a planar alignment on OTS at full coverage and an intermediate situation at partial OTS coverage because of the penetration of 5CB molecules into the monolayer, which also removes the tilt of the OTS SAM. Binary mixtures of HTS and OTS SAMs instead induce homeotropic (i.
View Article and Find Full Text PDFExtending the range of existence of biaxial nematic phases is key to their use in applications. Here, we have investigated using extensive molecular dynamics (MD) simulations of a coarse-grained model the possible advantages of using mesogenic mixtures. We have studied the phase organisation of five thermotropic mixtures of biaxial Gay-Berne (GB) ellipsoidal particles having the same volume, but different shapes and interactions, with aspect ratios ranging from rod-like to disc-like and, choosing fractional compositions so as to model a Gaussian dispersity of shapes.
View Article and Find Full Text PDFWe have studied, using Monte Carlo computer simulations, the effects that nanoparticles of similar size and three different shapes (spherical, elongated and discotic) dispersed at different concentrations in a liquid crystal (LC), have on the transition temperature, order parameter and mobility of the suspension. We have modelled the nanoparticles as berry-like clusters of spherical Lennard-Jones sites and the NP with a Gay-Berne model. We find that the overall phase behaviour is not affected by the addition of small amounts (xN = 0.
View Article and Find Full Text PDFWe have studied the wetting behaviour of liquid crystal nanodroplets deposited on a planar surface, modelling the mesogens with Gay-Berne ellipsoids and the support surface with a slab of Lennard-Jones (LJ) spherical particles whose mesogen-surface affinity can be tuned. A crystalline and an amorphous planar surface, both showing planar anchoring, have been investigated: the first is the (001) facet of a LJ fcc crystal, the second is obtained from a disordered LJ glass. In both cases we find that the deposited nanodroplet is, in general, elongated and that the contact angle changes around its contour.
View Article and Find Full Text PDFStatic dielectric tensors and charge carrier polarization energies of a wide set of organic molecules of interest for organic electronics application are calculated with two different approaches: intramolecular charge redistribution and induced dipoles (microlectrostatics). Our results show that, while charge redistribution is better suited for calculating the collective response to an external field, both methods reliably describe the effect of a localized charge carrier in the crystal. Advantages and limitations inherent to the different methods are discussed, also in relation to previous theoretical studies.
View Article and Find Full Text PDFWe present an atomistic molecular dynamics simulation of freely suspended films of the smectic liquid crystal 8CB formed by nl = 2, 3,…,10, 20 theoretical monolayers, determining their orientational and positional order as a function of the film thickness. We find that films are always composed by bilayers of antiparallel molecules, and that in the case of odd nl, the system prefers to self-assemble in (nl + 1)/2 bilayers, with an increase of surface tension with respect to even nl samples. We also show that external layers have higher positional and orientational order, and that upon heating the disordering of the system proceeds from the inside, with the central layers progressively losing their smectic character, while the external ones are more resistant to temperature changes and keep the film from breaking.
View Article and Find Full Text PDFWe investigate the switching of a biaxial nematic filling a flat cell with planar homogeneous anchoring using a coarse-grained molecular dynamics simulation. We have found that an aligning field applied across the film, and acting on specific molecular axes, can drive the reorientation of the secondary biaxial director up to one order of magnitude faster than that for the principal director. While the π/2 switching of the secondary director does not affect the alignment of the long molecular axes, the field-driven reorientation of the principal director proceeds via a concerted rotation of the long and transversal molecular axes.
View Article and Find Full Text PDFThe NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings.
View Article and Find Full Text PDF