Mutations in presenilin-1 (), encoding the catalytic subunit of the amyloid precursor protein-processing enzyme γ-secretase, cause familial Alzheimer's disease. However, the mechanism of disease is yet to be fully understood and it remains contentious whether mutations exert their effects predominantly through gain or loss of function. To address this question, we generated an isogenic allelic series for the mutation intron 4 deletion; represented by control, heterozygous and homozygous mutant induced pluripotent stem cells in addition to a presenilin-1 knockout line.
View Article and Find Full Text PDFAberrant or chronic microglial activation is strongly implicated in neurodegeneration, where prolonged induction of classical inflammatory pathways may lead to a compromised blood-brain barrier (BBB) or vasculature, features of many neurodegenerative disorders and implicated in the observed cognitive decline. BBB disruption or vascular disease may expose the brain parenchyma to "foreign" plasma proteins which subsequently impact on neuronal network integrity through neurotoxicity, synaptic loss and the potentiation of microglial inflammation. Here we show that the blood coagulation factor fibrinogen (FG), implicated in the pathogenesis of dementias such as Alzheimer's disease (AD), induces an inflammatory microglial phenotype as identified through genetic microarray analysis of a microglial cell line, and proteome cytokine profiling of primary microglia.
View Article and Find Full Text PDFDysfunction of microglia, the brain's immune cells, is linked to neurodegeneration. Homozygous missense mutations in TREM2 cause Nasu-Hakola disease (NHD), an early-onset dementia. To study the consequences of these TREM2 variants, we generated induced pluripotent stem cell-derived microglia-like cells (iPSC-MGLCs) from patients with NHD caused by homozygous T66M or W50C missense mutations.
View Article and Find Full Text PDFNeuroinflammation is a pathological hallmark of Alzheimer's disease (AD), and microglia, the brain's resident phagocyte, are pivotal for the immune response observed in AD. Microglia act as sentinel and protective cells, but may become inappropriately reactive in AD to drive neuropathology. Recent Genome Wide Association Studies (GWAS) have identified more than 20 gene variants associated with an increased risk of late-onset AD (LOAD), the most prevalent form of AD [1].
View Article and Find Full Text PDFThe efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the development of genetic therapies. We aim to develop nanocomplex formulations that achieve targeted transfection of neuroblastoma tumours that can be monitored simultaneously by MRI. Here, we have compared nanocomplexes comprising self-assembling mixtures of liposomes, plasmid DNA and one of three different peptide ligands derived from ApoE, neurotensin and tetanus toxin for targeted transfection in vitro and in vivo.
View Article and Find Full Text PDFGadolinium-labelled nanocomplexes offer prospects for the development of real-time, non-invasive imaging strategies to visualise the location of gene delivery by MRI. In this study, targeted nanoparticle formulations were prepared comprising a cationic liposome (L) containing a Gd-chelated lipid at 10, 15 and 20% by weight of total lipid, a receptor-targeted, DNA-binding peptide (P) and plasmid DNA (D), which electrostatically self-assembled into LPD nanocomplexes. The LPD formulation containing the liposome with 15% Gd-chelated lipid displayed optimal peptide-targeted, transfection efficiency.
View Article and Find Full Text PDF