A fundamental feature of cell signaling is the conversion of extracellular signals into adaptive transcriptional responses. The role of RNA modifications in this process is poorly understood. The small nuclear RNA 7SK prevents transcriptional elongation by sequestering the cyclin dependent kinase 9/cyclin T1 (CDK9/CCNT1) positive transcription elongation factor (P-TEFb) complex.
View Article and Find Full Text PDFThe developmental transcription factor SOX4 contributes to the metastatic spread of multiple solid cancer types, but its direct target genes that mediate cancer progression are not well defined. Using a systematic molecular and genomic approach, we identified the TMEM2 transmembrane protein gene as a direct transcriptional target of SOX4. TMEM2 was transcriptionally activated by SOX4 in breast cancer cells where, like SOX4, TMEM2 was found to mediate proinvasive and promigratory effects.
View Article and Find Full Text PDFN(6)-methyladenosine (m(6)A) is the most abundant internal modification of messenger RNA. While the presence of m(6)A on transcripts can impact nuclear RNA fates, a reader of this mark that mediates processing of nuclear transcripts has not been identified. We find that the RNA-binding protein HNRNPA2B1 binds m(6)A-bearing RNAs in vivo and in vitro and its biochemical footprint matches the m(6)A consensus motif.
View Article and Find Full Text PDFThe first step in the biogenesis of microRNAs is the processing of primary microRNAs (pri-miRNAs) by the microprocessor complex, composed of the RNA-binding protein DGCR8 and the type III RNase DROSHA. This initial event requires recognition of the junction between the stem and the flanking single-stranded RNA of the pri-miRNA hairpin by DGCR8 followed by recruitment of DROSHA, which cleaves the RNA duplex to yield the pre-miRNA product. While the mechanisms underlying pri-miRNA processing have been determined, the mechanism by which DGCR8 recognizes and binds pri-miRNAs, as opposed to other secondary structures present in transcripts, is not understood.
View Article and Find Full Text PDF