Publications by authors named "Claudio Pinto"

Mesenchymal stem/stromal cells (MSC) play a pivotal role in regenerative therapies. Recent studies show that factors secreted by MSC can replicate their biological activity, driving the emergence of cell-free therapy, likely to surpass stem cell therapy. Patents are an objective measure of R&D and innovation activities, and patent mapping allows us to verify the state of the art and technology, anticipate trends, and identify emerging lines of research.

View Article and Find Full Text PDF

The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival.

View Article and Find Full Text PDF

Introduction: Nucleic acid-based therapeutics offer groundbreaking potential for treating genetic diseases and advancing next-generation vaccines. Despite their promise, challenges in efficient delivery persist due to the properties of nucleic acids. Nanoparticles (NPs) serve as vital carriers, facilitating effective delivery to target cells, and addressing these challenges.

View Article and Find Full Text PDF

Background: Growing evidence suggests that the non-receptor tyrosine kinase, c-Abl, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Here, we analyzed the effect of c-Abl on the cognitive performance decline of APPSwe/PSEN1ΔE9 (APP/PS1) mouse model for AD.

Methods: We used the conditional genetic ablation of c-Abl in the brain (c-Abl-KO) and pharmacological treatment with neurotinib, a novel allosteric c-Abl inhibitor with high brain penetrance, imbued in rodent's chow.

View Article and Find Full Text PDF

Background: Radiolabeled fibroblast activation protein (FAP) ligands, a novel class of tracers for PET/CT imaging, have demonstrated very promising results in various oncological, as well as in some benign, diseases with long-term potential to supplant the current pan-cancer agent [F]FDG in some cancer types. Pancreatic ductal carcinoma (PDAC) belongs to the group of epithelial malignancies with a strong so-called "desmoplastic reaction", leading to a prominent tumor stroma with cancer-associated fibroblasts that exhibit a marked overexpression of fibroblast activation protein (FAP). The first clinical experiences in PDAC with Ga-labeled FAP ligands suggested superior sensitivity to [F]FDG.

View Article and Find Full Text PDF

Niemann-Pick type A (NPA) disease is a fatal lysosomal neurodegenerative disorder caused by the deficiency in acid sphingomyelinase (ASM) activity. NPA patients present severe and progressive neurodegeneration starting at an early age. Currently, there is no effective treatment for this disease and NPA patients die between 2 and 3 years of age.

View Article and Find Full Text PDF

A major function of the intrahepatic biliary epithelium is bicarbonate excretion in bile. Recent reports indicate that budesonide, a corticosteroid with high receptor affinity and hepatic first pass clearance, increases the efficacy of ursodeoxycholic acid, a choleretic agent, in primary biliary cholangitis patients. We have previously reported that bile ducts isolated from rats treated with dexamethasone or budesonide showed an enhanced activity of the Na/H exchanger isoform 1 (NHE1) and Cl/HCO exchanger protein 2 (AE2) .

View Article and Find Full Text PDF

Autophagy is a "housekeeping" lysosomal degradation process involved in numerous physiological and pathological processes in all eukaryotic cells. The dysregulation of hepatic autophagy has been described in several conditions, from obesity to diabetes and cholestatic disease. We review the role of autophagy, focusing on age-related cholestatic diseases, and discuss its therapeutic potential and the molecular targets identified to date.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is a malignant tumour of the biliary system that originates from the neoplastic transformation of cholangiocytes. CCA is characterized by late diagnosis and poor outcome, with surgery considered as the last option for management. Autophagy is a physiological lysosomal degradation process, essential for cellular homeostasis and ubiquitous in all eukaryotic cells.

View Article and Find Full Text PDF

The biomedical potential of the edible red seaweed (formerly ) has not been explored. Red seaweeds are enriched in polyunsaturated fatty acids and eicosanoids, which are known natural ligands of the PPARγ nuclear receptor. PPARγ is the molecular target of thiazolidinediones (TZDs), drugs used as insulin sensitizers to treat type 2 diabetes mellitus.

View Article and Find Full Text PDF

Introduction: Systemic chronic low-grade inflammation has been linked to insulin resistance (IR) and non-alcoholic steatohepatitis (NASH). NOD-like receptor protein 3 (NLRP3) inflammasome and its final product, interleukin (IL)-1β, exert detrimental effects on insulin sensitivity and promote liver inflammation in murine models. Evidence linking hepatic NLRP3 inflammasome, systemic IR and NASH has been scarcely explored in humans.

View Article and Find Full Text PDF

The Nlrp3 inflammasome is a multiprotein complex activated by a number of bacterial products or danger signals and is involved in the regulation of inflammatory processes through caspase-1 activation. The Nlrp3 is expressed in immune cells but also in hepatocytes and cholangiocytes, where it appears to be involved in regulation of biliary damage, epithelial barrier integrity and development of fibrosis. Activation of the pathways of innate immunity is crucial in the pathophysiology of hepatobiliary diseases, given the strong link between the gut and the liver.

View Article and Find Full Text PDF

Aging is commonly defined as the time-dependent functional decline of organs and tissues. Average life expectancy has increased considerably over the past century and is estimated to increase even further, consequently also the interest in understanding the aging processes. Although aging is not a disease, it is the major risk factor for the development of many chronic diseases.

View Article and Find Full Text PDF

Interest in understanding the aging process has recently risen in the scientific community. Aging, commonly defined as the functional decline in the function of organs and tissues, is indeed the major risk factor for the development of many chronic diseases, such as cardiovascular diseases, pathologies of nervous system, or cancer. To date, the influence of aging in the pathophysiology of liver and biliary diseases is not fully understood.

View Article and Find Full Text PDF

Background And Objectives: The primary treatment for locally advanced cases of cervical cancer is chemoradiation followed by high-dose brachytherapy. When this treatment fails, pelvic exenteration (PE) is an option in some cases. This study aimed to develop recommendations for the best management of patients with cervical cancer undergoing salvage PE.

View Article and Find Full Text PDF

Disorders of the biliary tree develop and progress differently according to patient age. It is currently not known whether the aging process affects the response to injury of cholangiocytes. The aim of this study was to identify molecular pathways associated with cholangiocyte aging and to determine their effects in the biological response to injury of biliary cells.

View Article and Find Full Text PDF

Cholangiocytes, the epithelial cells lining the bile ducts, represent the unique target of a group of progressive diseases known as cholangiopathies whose pathogenesis remain largely unknown. In normal conditions, cholangiocytes are quiescent and participate to the final bile volume and composition. Following exogenous or endogenous stimuli, cholangiocytes undergo extensive modifications of their phenotype.

View Article and Find Full Text PDF

Non-Alcoholic Fatty Liver Disease (NAFLD) represents the most common form of chronic liver injury and can progress to cirrhosis and hepatocellular carcinoma. A "multi-hit" theory, involving high fat diet and signals from the gut-liver axis, has been hypothesized. The role of the NLRP3-inflammasome, which senses dangerous signals, is controversial.

View Article and Find Full Text PDF

Unlabelled: The peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1β (PGC-1 β) is a master regulator of mitochondrial biogenesis and oxidative metabolism as well as of antioxidant defense. Specifically, in the liver, PGC-1β also promotes de novo lipogenesis, thus sustaining cellular anabolic processes. Given the relevant pathogenic role of mitochondrial and fatty acid metabolism in hepatocarcinoma (HCC), here we pointed to PGC-1β as a putative novel transcriptional player in the development and progression of HCC.

View Article and Find Full Text PDF

Cholangiocytes, the epithelial cells lining the bile ducts, are an important subset of liver cells. They are involved in the modification of bile volume and composition, and respond to endogenous and exogenous stimuli. Along the biliary tree, two different kinds of cholangiocytes exist: small and large cholangiocytes.

View Article and Find Full Text PDF

Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro.

View Article and Find Full Text PDF

The proliferative-crypt compartment of the intestinal epithelium is enriched in phospholipids and accumulation of phospholipids has been described in colorectal tumors. Here we hypothesize that biliary phospholipid flow could directly contribute to the proliferative power of normal and dysplastic enterocytes. We used Abcb4 mice which lack biliary phospholipid secretion.

View Article and Find Full Text PDF

Microbial products are thought to influence the progression of cholangiopathies, in particular primary sclerosing cholangitis (PSC). Inflammasomes are molecular platforms that respond to microbial products through the synthesis of proinflammatory cytokines. We investigated the role of inflammasome activation in cholangiocyte response to injury.

View Article and Find Full Text PDF

The social species Octodon degus (degu) is the only wild-type South American rodent that develops Alzheimer's-like pathology with age. Here, we evaluated the ability of a natural product (Andrographolide, ANDRO), a diterpene of the labdane family obtained from the Asian plant Andrographis paniculata, to recover the cognitive decline in this long-lived animal model. We administered ANDRO to aged degus (56-month old) for 3 months.

View Article and Find Full Text PDF