The initiation phase is the rate-limiting step of protein synthesis (translation) and is finely regulated, making it an important drug target. In bacteria, initiation is guided by three initiation factors and involves positioning the start site on the messenger RNA within the P-site on the small ribosomal subunit (30S), where it is decoded by the initiator tRNA. This process can be efficiently inhibited by GE81112, a natural hydrophilic, noncyclic, nonribosomal tetrapeptide.
View Article and Find Full Text PDFThe antimicrobial peptide LR (LLRLLRRGGRRLLRLL-NH2) was designed and chemically synthesized in a study conducted by Jia et al. Gram-negative bacteria were found to be sensitive to LR and exhibited a high therapeutic index. Genetic engineering methods were used to create the prokaryotic fusion expression vector pQE-GFP-LR, and the resulting corresponding fusion protein GFP-LR was subsequently expressed and purified.
View Article and Find Full Text PDFSubstitution of the conserved Histidine 448 present in one of the three consensus elements characterizing the guanosine nucleotide binding domain (IF2 G2) of translation initiation factor IF2 resulted in impaired ribosome-dependent GTPase activity which prevented IF2 dissociation from the ribosome, caused a severe protein synthesis inhibition, and yielded a dominant lethal phenotype. A reduced IF2 affinity for the ribosome was previously shown to suppress this lethality. Here, we demonstrate that also a reduced IF2 affinity for fMet-tRNA can suppress this dominant lethal phenotype and allows IF2 to support faithful translation in the complete absence of GTP hydrolysis.
View Article and Find Full Text PDFAs free-living organisms, bacteria are subject to continuous, numerous and occasionally drastic environmental changes to which they respond with various mechanisms which enable them to adapt to the new conditions so as to survive. Here we describe three situations in which the ribosome and its functions represent the sensor or the target of the stress and play a key role in the subsequent cellular response. The three stress conditions which are described are those ensuing upon: a) zinc starvation; b) nutritional deprivation, and c) temperature downshift.
View Article and Find Full Text PDFThe conserved Histidine 301 in switch II of IF2 G2 domain was substituted with Ser, Gln, Arg, Leu and Tyr to generate mutants displaying different phenotypes. Overexpression of IF2H301S, IF2H301L and IF2H301Y in cells expressing wtIF2, unlike IF2H301Q and IF2H301R, caused a dominant lethal phenotype, inhibiting in vivo translation and drastically reducing cell viability. All mutants bound GTP but, except for IF2H301Q, were inactive in ribosome-dependent GTPase for different reasons.
View Article and Find Full Text PDFAfter a 37 to 10°C temperature downshift the level of translation initiation factor IF2, like that of IF1 and IF3, increases at least 3-fold with respect to the ribosomes. To clarify the mechanisms and conditions leading to cold-stress induction of infB expression, the consequences of this temperature shift on infB (IF2) transcription, infB mRNA stability and translation were analysed. The Escherichia coli gene encoding IF2 is part of the metY-nusA-infB operon that contains three known promoters (P-1, P0 and P2) in addition to two promoters P3 and P4 identified in this study, the latter committed to the synthesis of a monocistronic mRNA encoding exclusively IF2.
View Article and Find Full Text PDFCold-stress in Escherichia coli induces de novo synthesis of translation initiation factors IF1, IF2 and IF3 while ribosome synthesis and assembly slow down. Consequently, the IFs/ribosome stoichiometric ratio increases about 3-fold during the first hours of cold adaptation. The IF1 and IF3 increase plays a role in translation regulation at low temperature (cold-shock-induced translational bias) but so far no specific role could be attributed to the extra copies of IF2.
View Article and Find Full Text PDFTo assess the influence of degenerate initiation triplets on mRNA recruitment by ribosomes, five mRNAs identical but for their start codon (AUG, GUG, UUG, AUU and AUA) were offered to a limiting amount of ribosomes, alone or in competition with an identical AUGmRNA bearing a mutation conferring different electrophoretic mobility to the product. Translational efficiency and competitiveness of test mRNAs toward this AUGmRNA were determined quantifying the relative amounts of the electrophoretically separated wt and mutated products synthesized in vitro and found to be influenced to different extents by the nature of their initiation triplet and by parameters such as temperature and nutrient availability in the medium. The behaviors of AUAmRNA, UUGmRNA and AUGmRNA were the same between 20 and 40°C whereas the GUG and AUUmRNAs were less active and competed poorly with the AUGmRNA, especially at low temperature.
View Article and Find Full Text PDFIn bacteria, the start site and the reading frame of the messenger RNA are selected by the small ribosomal subunit (30S) when the start codon, typically an AUG, is decoded in the P-site by the initiator tRNA in a process guided and controlled by three initiation factors. This process can be efficiently inhibited by GE81112, a natural tetrapeptide antibiotic that is highly specific toward bacteria. Here GE81112 was used to stabilize the 30S pre-initiation complex and obtain its structure by cryo-electron microscopy.
View Article and Find Full Text PDFBacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated.
View Article and Find Full Text PDFGE81112 is a tetrapeptide antibiotic that binds to the 30S ribosomal subunit and specifically inhibits P-site decoding of the mRNA initiation codon by the fMet-tRNA anticodon. GE81112 displays excellent microbiological activity against some Gram-positive and Gram-negative bacteria in both minimal and complete, chemically defined, broth, but is essentially inactive in complete complex media. This is due to the presence of peptides that compete with the antibiotic for the oligopeptide permease system (Opp) responsible for its illicit transport into the bacterial cells as demonstrated in the cases of Escherichia coli and Bacillus subtilis.
View Article and Find Full Text PDFIn prokaryotic systems, the initiation phase of protein synthesis is governed by the presence of initiation factors that guide the transition of the small ribosomal subunit (30S) from an unlocked preinitiation complex (30S preIC) to a locked initiation complex (30SIC) upon the formation of a correct codon-anticodon interaction in the peptidyl (P) site. Biochemical and structural characterization of GE81112, a translational inhibitor specific for the initiation phase, indicates that the main mechanism of action of this antibiotic is to prevent P-site decoding by stabilizing the anticodon stem loop of the initiator tRNA in a distorted conformation. This distortion stalls initiation in the unlocked 30S preIC state characterized by tighter IF3 binding and a reduced association rate for the 50S subunit.
View Article and Find Full Text PDFDuring the cold adaptation that follows a cold stress, bacterial cells undergo many physiological changes and extensive reprogramming of their gene expression pattern. Bulk gene expression is drastically reduced, while a set of cold shock genes is selectively and transiently expressed. The initial stage of cold acclimation is characterized by the establishment of a stoichiometric imbalance of the translation initiation factors (IFs)/ribosomes ratio that contributes to the preferential translation of cold shock transcripts.
View Article and Find Full Text PDFHygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation.
View Article and Find Full Text PDFCell Mol Life Sci
November 2015
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation.
View Article and Find Full Text PDFCurrent knowledge about the spread of pathogens in aquatic environments is scarce probably because bacteria, viruses, algae and their toxins tend to occur at low concentrations in water, making them very difficult to measure directly. The purpose of this study was the development and validation of tools to detect pathogens in freshwater systems close to an urban area. In order to evaluate anthropogenic impacts on water microbiological quality, a phylogenetic microarray was developed in the context of the EU project µAQUA to detect simultaneously numerous pathogens and applied to samples from two different locations close to an urban area located upstream and downstream of Rome in the Tiber River.
View Article and Find Full Text PDFThe translocation of mRNA and tRNA through the ribosome is catalyzed by elongation factor G (EF-G), a universally conserved guanosine triphosphate hydrolase (GTPase). The mechanism by which the closely related decapeptide antibiotics dityromycin and GE82832 inhibit EF-G-catalyzed translocation is elucidated in this study. Using crystallographic and biochemical experiments, we demonstrate that these antibiotics bind to ribosomal protein S12 in solution alone as well as within the small ribosomal subunit, inducing long-range effects on the ribosomal head.
View Article and Find Full Text PDFTranslation initiation factor 2 (IF2) promotes 30S initiation complex (IC) formation and 50S subunit joining, which produces the 70S IC. The architecture of full-length IF2, determined by small angle X-ray diffraction and cryo electron microscopy, reveals a more extended conformation of IF2 in solution and on the ribosome than in the crystal. The N-terminal domain is only partially visible in the 30S IC, but in the 70S IC, it stabilizes interactions between IF2 and the L7/L12 stalk of the 50S, and on its deletion, proper N-formyl-methionyl(fMet)-tRNA(fMet) positioning and efficient transpeptidation are affected.
View Article and Find Full Text PDFUpon high throughput screening of 6700 microbial fermentation extracts, we discovered a compound, designated orthoformimycin, capable of inhibiting protein synthesis in vitro with high efficiency. The molecule, whose structure was elucidated by chemical, spectrometric, and spectroscopic methods, contains an unusual orthoformate moiety (hence the name) and belongs to a novel class of translation inhibitors. This antibiotic does not affect any function of the 30S ribosomal subunit but binds to the 50S subunit causing inhibition of translation elongation and yielding polypeptide products of reduced length.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
June 2013
Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated.
View Article and Find Full Text PDFFurvina®, also denominated G1 (MW 297), is a synthetic nitrovinylfuran [2-bromo-5-(2-bromo-2-nitrovinyl)-furan] antibiotic with a broad antimicrobial spectrum. An ointment (Dermofural®) containing G1 as the only active principle is currently marketed in Cuba and successfully used to treat dermatological infections. Here we describe the molecular target and mechanism of action of G1 in bacteria and demonstrate that in vivo G1 preferentially inhibits protein synthesis over RNA, DNA and cell wall synthesis.
View Article and Find Full Text PDFThe structure of GE82832, a translocation inhibitor produced by a soil microorganism, is shown to be highly related to that of dityromycin, a bicyclodecadepsipeptide antibiotic discovered long ago whose characterization had never been pursued beyond its structural elucidation. GE82832 and dityromycin were shown to interfere with both aminoacyl-tRNA and mRNA movement and with the Pi release occurring after ribosome- and EF-G-dependent GTP hydrolysis. These findings and the unusual ribosomal localization of GE82832/dityromycin near protein S13 suggest that the mechanism of inhibition entails an interference with the rotation of the 30S subunit "head" which accompanies the ribosome-unlocking step of translocation.
View Article and Find Full Text PDFTranslation initiation factor IF2 is a guanine nucleotide-binding protein. The free energy change associated with guanosine triphosphate hydrolase (GTPase) activity of these proteins is believed to be the driving force allowing them to perform their functions as molecular switches. We examined role and relevance of IF2 GTPase and demonstrate that an Escherichia coli IF2 mutant bearing a single amino acid substitution (E571K) in its 30S binding domain (IF2-G3) can perform in vitro all individual translation initiation functions of wild type (wt) IF2 and supports faithful messenger RNA translation, despite having a reduced affinity for the 30S subunit and being completely inactive in GTP hydrolysis.
View Article and Find Full Text PDFInitiation factors guide the ribosome in the selection of mRNA and translational reading frame. We determined the kinetically favored assembly pathway of the 30S preinitiation complex (30S PIC), an early intermediate in 30S initiation complex formation in Escherichia coli. IF3 and IF2 are the first factors to arrive, forming an unstable 30S-IF2-IF3 complex.
View Article and Find Full Text PDFBacterial translation initiation factor IF2 promotes ribosomal subunit association, recruitment, and binding of fMet-tRNA to the ribosomal P-site and initiation dipeptide formation. Here, we present the solution structures of GDP-bound and apo-IF2-G2 of Bacillus stearothermophilus and provide evidence that this isolated domain binds the 50 S ribosomal subunit and hydrolyzes GTP. Differences between the free and GDP-bound structures of IF2-G2 suggest that domain reorganization within the G2-G3-C1 regions underlies the different structural requirements of IF2 during the initiation process.
View Article and Find Full Text PDF