We present a comparison of two experimental methods to measure retardance as a function of applied voltage and as a function of position over the aperture of liquid-crystal variable retarders. These measurements are required for many applications, particularly in polarimetry. One method involves the scan of an unexpanded laser beam over the aperture, and the other uses an expanded beam from a LED and a CCD camera to measure the full aperture with a single measurement.
View Article and Find Full Text PDFWe present a comparison of the first numerical and experimental results for the scattering of light from rough surfaces using a recently developed variable coherence polarimetry source that permits obtaining information on the object without having to scan over incidence or scatter angle. We present, for the first time, we believe, the application of this source to a 1D rough surface and show how to analyze the scattered field to retrieve useful information about the surface. This source uses a liquid-crystal phase modulator to control the polarization as well as the coherence of the beam illuminating the rough surface.
View Article and Find Full Text PDF