Publications by authors named "Claudio Mattiussi"

In an instant classic paper (Lazebnik, in Cancer Cell 2(3); 2002: 179-182) biologist Yuri Lazebnik deplores the poor effectiveness of the approach adopted by biologists to understand and "fix" biological systems. Lazebnik suggests that to remedy this state of things biologist should take inspiration from the approach used by engineers to design, understand, and troubleshoot technological systems. In the present paper I substantiate Lazebnik's analysis by concretely showing how to apply the engineering approach to biological problems.

View Article and Find Full Text PDF

Numerous methods have been developed for inferring gene regulatory networks from expression data, however, both their absolute and comparative performance remain poorly understood. In this paper, we introduce a framework for critical performance assessment of methods for gene network inference. We present an in silico benchmark suite that we provided as a blinded, community-wide challenge within the context of the DREAM (Dialogue on Reverse Engineering Assessment and Methods) project.

View Article and Find Full Text PDF

In this paper, we suggest a new approach for reverse engineering gene regulatory networks, which consists of using a reconstruction process that is similar to the evolutionary process that created these networks. The aim is to integrate prior knowledge into the reverse-engineering procedure, thus biasing the search toward biologically plausible solutions. To this end, we propose an evolutionary method that abstracts and mimics the natural evolution of gene regulatory networks.

View Article and Find Full Text PDF

The output of reverse-engineering methods for biological networks is often not a single network prediction, but an ensemble of networks that are consistent with the experimentally measured data. In this paper, we consider the problem of combining the information contained within such an ensemble in order to (1) make more accurate network predictions and (2) estimate the reliability of these predictions. We review existing methods, discuss their limitations, and point out possible research directions toward more advanced methods for this purpose.

View Article and Find Full Text PDF

Reverse engineering methods are typically first tested on simulated data from in silico networks, for systematic and efficient performance assessment, before an application to real biological networks. In this paper, we present a method for generating biologically plausible in silico networks, which allow realistic performance assessment of network inference algorithms. Instead of using random graph models, which are known to only partly capture the structural properties of biological networks, we generate network structures by extracting modules from known biological interaction networks.

View Article and Find Full Text PDF

Actigraphy for long-term sleep/wake monitoring fails to correctly classify situations where the subject displays low activity, but is awake. In this paper we propose a new algorithm which uses both accelerometer and cardio-respiratory signals to overcome this restriction. Acceleration, electrocardiogram and respiratory effort were measured with an integrated wearable recording system worn on the chest by three healthy male subjects during normal daily activities.

View Article and Find Full Text PDF

In this paper we address the problem of defining a measure of diversity for a population of individuals whose genome can be subjected to major reorganizations during the evolutionary process. To this end, we introduce a measure of diversity for populations of strings of variable length defined on a finite alphabet, and from this measure we derive a semi-metric distance between pairs of strings. The definitions are based on counting the number of substrings of the strings, considered first separately and then collectively.

View Article and Find Full Text PDF