Amphetamine derivatives have therapeutic potential in diseases such as attention deficit hyperactivity disorder, narcolepsy and obesity. However, their prolonged use has been associated with cardiovascular toxicity and addiction. In recent years, we have studied the pharmacological effects of amphetamine derivatives such as methylthioamphetamine (MTA) and N,N-dimethyl-thioamphetamine, with the aim of improving their therapeutic selectivity.
View Article and Find Full Text PDFHalogenation of the aporphine alkaloid boldine at the 3-position leads to increased affinity for rat brain D(1)-like dopaminergic receptors with some selectivity over D(2)-like receptors. A series of 3-halogenated and 3,8-dihalogenated (halogen=Cl, Br or I) derivatives of predicentrine (9-O-methylboldine) and glaucine (2,9-di-O-methylboldine) were prepared and assayed for binding at D(1) and D(2) sites. Halogenation of predicentrine led to strong increases in affinity for D(1)-like receptors, while the affinities for D(2)-like receptors were either practically unchanged or reduced three- to fourfold.
View Article and Find Full Text PDF(+/-)-4-Methylthioamphetamine (MTA) was resolved into its enantiomers, and a series of N-alkyl derivatives of the parent compound, as well as its alpha-ethyl analogue, were prepared. The monoamine oxidase (MAO) inhibitory properties of these substances were evaluated in vitro, using a crude rat brain mitochondrial suspension as the source of enzyme. All compounds produced a selective, reversible and concentration-related inhibition of MAO-A.
View Article and Find Full Text PDF