Publications by authors named "Claudio Humeres"

Aims: Transforming growth factor (TGF)-β is up-regulated in the diabetic myocardium and may mediate fibroblast activation. We aimed at examining the role of TGF-β-induced fibroblast activation in the pathogenesis of diabetic cardiomyopathy.

Methods And Results: We generated lean and obese db/db mice with fibroblast-specific loss of TbR2, the Type 2 receptor-mediating signaling through all three TGF-β isoforms, and mice with fibroblast-specific Smad3 disruption.

View Article and Find Full Text PDF

Although some studies have suggested that macrophages may secrete structural collagens, and convert to fibroblast-like cells, macrophage to fibroblast transdifferentiation in infarcted and remodeling hearts remains controversial. Our study uses linage tracing approaches and single cell transcriptomics to examine whether macrophages undergo fibroblast conversion, and to characterize the extracellular matrix expression profile of myeloid cells in myocardial infarction. To examine whether infarct macrophages undergo fibroblast conversion, we identified macrophage-derived progeny using the inducible CX3CR1 mice crossed with the PDGFRα reporter line for reliable fibroblast identification.

View Article and Find Full Text PDF

Background: Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-β (transforming growth factor-β)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-β activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-β response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling.

View Article and Find Full Text PDF

Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of pericytes in heart repair after a myocardial infarction, revealing that they contribute to both fibrosis and the formation of new blood vessels in the damaged area.
  • - Researchers utilized specialized mice models and advanced sequencing techniques to trace the lineage and characteristics of pericytes, finding that some switch to expressing fibroblast markers following injury.
  • - Results indicate that these pericyte-derived fibroblasts play an active role in tissue repair by producing higher levels of various structural and signaling proteins compared to traditional fibroblasts.
View Article and Find Full Text PDF

Smad7 restrains TGF-β responses, and has been suggested to exert both pro- and anti-inflammatory actions that may involve effects on macrophages. Myocardial infarction triggers a macrophage-driven inflammatory response that not only plays a central role in cardiac repair, but also contributes to adverse remodeling and fibrosis. We hypothesized that macrophage Smad7 expression may regulate inflammation and fibrosis in the infarcted heart through suppression of TGF-β responses, or via TGF-independent actions.

View Article and Find Full Text PDF

The adult mammalian heart contains abundant interstitial and perivascular fibroblasts that expand following injury and play a reparative role but also contribute to maladaptive fibrotic remodeling. Following myocardial infarction, cardiac fibroblasts undergo dynamic phenotypic transitions, contributing to the regulation of inflammatory, reparative, and angiogenic responses. This review manuscript discusses the mechanisms of regulation, roles and fate of fibroblasts in the infarcted heart.

View Article and Find Full Text PDF

In infarcted and failing hearts, TGF-β superfamily members play an important role in regulation of inflammatory, reparative, fibrogenic, and hypertrophic responses through activation of Smad-dependent and Smad-independent cascades. This review manuscript discusses the mechanisms of regulation and role of Smad pathways in myocardial infarction and in heart failure. Cardiomyocyte-specific Smad1 activation exerts protective anti-apoptotic actions following ischemia/reperfusion.

View Article and Find Full Text PDF

Repair of the infarcted heart requires TGF-β/Smad3 signaling in cardiac myofibroblasts. However, TGF-β-driven myofibroblast activation needs to be tightly regulated in order to prevent excessive fibrosis and adverse remodeling that may precipitate heart failure. We hypothesized that induction of the inhibitory Smad, Smad7, may restrain infarct myofibroblast activation, and we examined the molecular mechanisms of Smad7 actions.

View Article and Find Full Text PDF

Tissue injury results in profound alterations in the collagen network, associated with unfolding of the collagen triple helix, proteolytic degradation and generation of fragments. In the infarcted myocardium, changes in the collagen network are critically involved in the pathogenesis of left ventricular rupture, adverse remodeling and chronic dysfunction. We hypothesized that myocardial infarction is associated with temporally and spatially restricted patterns of collagen denaturation that may reflect distinct molecular mechanisms of collagen unfolding.

View Article and Find Full Text PDF

In the normal heart, cardiac fibroblasts (CFs) maintain extracellular matrix (ECM) homeostasis, whereas in pathological conditions, such as diabetes mellitus (DM), CFs converse into cardiac myofibroblasts (CMFs) and this CFs phenoconversion increase the synthesis and secretion of ECM proteins, promoting cardiac fibrosis and heart dysfunction. High glucose (HG) conditions increase TGF-β1 expression and FoxO1 activity, whereas FoxO1 is crucial to CFs phenoconversion induced by TGF-β1. In addition, FoxO1 increases CTGF expression, whereas CTGF plays an active role in the fibrotic process induced by hyperglycemia.

View Article and Find Full Text PDF

Most myocardial pathologic conditions are associated with cardiac fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix (ECM) proteins. Although replacement fibrosis plays a reparative role after myocardial infarction, excessive, unrestrained or dysregulated myocardial ECM deposition is associated with ventricular dysfunction, dysrhythmias and adverse prognosis in patients with heart failure. The members of the Transforming Growth Factor (TGF)-β superfamily are critical regulators of cardiac repair, remodeling and fibrosis.

View Article and Find Full Text PDF

The heart contains an abundant fibroblast population that may play a role in homeostasis, by maintaining the extracellular matrix (ECM) network, by regulating electrical impulse conduction, and by supporting survival and function of cardiomyocytes and vascular cells. Despite an explosion in our understanding of the role of fibroblasts in cardiac injury, the homeostatic functions of resident fibroblasts in adult hearts remain understudied. TGF-β-mediated signaling through the receptor-activated Smads, Smad2 and Smad3 critically regulates fibroblast function.

View Article and Find Full Text PDF

Cardiac fibroblasts (CFs) are necessary to maintain extracellular matrix (ECM) homeostasis in the heart. Normally, CFs are quiescent and secrete small amounts of ECM components, whereas, in pathological conditions, they differentiate into more active cells called cardiac myofibroblasts (CMF). CMF conversion is characteristic of cardiac fibrotic diseases, such as heart failure and diabetic cardiomyopathy.

View Article and Find Full Text PDF

Expansion and activation of fibroblasts following cardiac injury is important for repair but may also contribute to fibrosis, remodeling, and dysfunction. The authors discuss the dynamic alterations of fibroblasts in failing and remodeling myocardium. Emerging concepts suggest that fibroblasts are not unidimensional cells that act exclusively by secreting extracellular matrix proteins, thus promoting fibrosis and diastolic dysfunction.

View Article and Find Full Text PDF

Cardiac myofibroblast (CMF) are non-muscle cardiac cells that play a crucial role in wound healing and in pathological remodeling. These cells are mainly derived of cardiac fibroblast (CF) differentiation mediated by TGF-β1. Evidence suggests that bradykinin (BK) regulates cardiac fibroblast function in the heart.

View Article and Find Full Text PDF

TGF-βs regulate fibroblast responses, by activating Smad2 or Smad3 signaling, or via Smad-independent pathways. We have previously demonstrated that myofibroblast-specific Smad3 is critically implicated in repair of the infarcted heart. However, the role of fibroblast Smad2 in myocardial infarction remains unknown.

View Article and Find Full Text PDF

Cardiac fibroblasts (CFs) contribute to theinflammatory response to tissue damage, secreting both pro- and anti-inflammatory cytokines and chemokines. Interferon beta (IFN-β) induces the phosphorylation of signal transducer and activator of transcription (STAT) proteins through the activation of its own receptor, modulating the secretion of cytokines and chemokines which regulate inflammation. However, the role of IFN-β and STAT proteins in modulating the inflammatory response of CF remains unknown.

View Article and Find Full Text PDF

Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels.

View Article and Find Full Text PDF

Unlabelled: Cardiac fibroblasts (CF) act as sentinel cells responding to chemokines, cytokines and growth factors released in cardiac tissue in cardiac injury events, such as myocardial infarction (MI). Cardiac injury involves the release of various damage-associated molecular patterns (DAMPs) including heparan sulfate (HS), a constituent of the extracellular matrix (ECM), through the TLR4 receptor activation triggering a strong inflammatory response, inducing leukocytes recruitment. This latter cells are responsible of clearing cell debris and releasing cytokines that promote CF differentiation to myofibroblast (CMF), thus initiating scar formation.

View Article and Find Full Text PDF

Bacterial lipopolysaccharide (LPS) is a known ligand of Toll-like receptor 4 (TLR4) which is expressed in cardiac fibroblasts (CF). Differentiation of CF to cardiac myofibroblasts (CMF) is induced by transforming growth factor-β1 (TGF-β1), increasing alpha-smooth muscle actin (α-SMA) expression. In endothelial cells, an antagonist effect between LPS-induced signaling and canonical TGF-β1 signaling was described; however, it has not been studied whether in CF and CMF the expression of α-SMA induced by TGF-β1 is antagonized by LPS and the mechanism involved.

View Article and Find Full Text PDF

Macrophage polarization plays an essential role in cardiac remodeling after injury, evolving from an initial accumulation of proinflammatory M1 macrophages to a greater balance of anti-inflammatory M2 macrophages. Whether cardiac fibroblasts themselves influence this process remains an intriguing question. In this work, we present evidence for a role of cardiac fibroblasts (CF) as regulators of macrophage recruitment and skewing.

View Article and Find Full Text PDF

Cardiac myofibroblasts play an important role in myocardial remodeling. Although α-smooth muscle actin (α-SMA) expression is the hallmark of mature myofibroblasts, its role in regulating fibroblast function remains poorly understood. We explore the effects of the matrix environment in modulating cardiac fibroblast phenotype, and we investigate the role of α-SMA in fibroblast function using loss- and gain-of-function approaches.

View Article and Find Full Text PDF

Unlabelled: Cardiac inflammation can be produced by pathogen-associated molecular patterns (PAMPs), from parasitic, bacterial or viral origin; or by danger-associated molecular patterns (DAMPs), released from dead cells after cardiac tissue damage, for example by cardiac infarction. Both, PAMPS and DAMPS activate TLR4 on resident immune cells and heart tissue cells, triggering an inflammatory process necessary to begin the wound healing process. Cardiac fibroblasts (CF) are the most abundant cells in the heart and are critical to wound healing, along with cardiac myofibroblasts (CMF), which are differentiated from CF through a TGF-β1-mediated process.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiones1uggr6h4vhbfhg0citen7muol7jk23): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once