The complex pathobiology of late-onset Alzheimer's disease (AD) poses significant challenges to therapeutic and preventative interventions. Despite these difficulties, genomics and related disciplines are allowing fundamental mechanistic insights to emerge with clarity, particularly with the introduction of high-resolution sequencing technologies. After all, the disrupted processes at the interface between DNA and gene expression, which we call the broken AD genome, offer detailed quantitative evidence unrestrained by preconceived notions about the disease.
View Article and Find Full Text PDFGene expression is changed by disease, but how these molecular responses arise and contribute to pathophysiology remains less understood. We discover that β-amyloid, a trigger of Alzheimer's disease (AD), promotes the formation of pathological CREB3L2-ATF4 transcription factor heterodimers in neurons. Through a multilevel approach based on AD datasets and a novel chemogenetic method that resolves the genomic binding profile of dimeric transcription factors (ChIPmera), we find that CREB3L2-ATF4 activates a transcription network that interacts with roughly half of the genes differentially expressed in AD, including subsets associated with β-amyloid and tau neuropathologies.
View Article and Find Full Text PDFCells possess several conserved adaptive mechanisms to respond to stress. Stress signaling is initiated to reestablish cellular homeostasis, but its effects on the tissue or systemic levels are far less understood. We report that the secreted luminal domain of the endoplasmic reticulum (ER) stress transducer CREB3L2 (which we name TAILS [transmissible activator of increased cell livability under stress]) is an endogenous, cell non-autonomous activator of neuronal resilience.
View Article and Find Full Text PDFCentral nervous system (CNS)-targeted products are an important category of pediatric pharmaceuticals. In view of the significant postnatal maturation of the CNS, juvenile animal studies (JAS) are performed to support pediatric development of these new medicines. In this project, the design and results of juvenile toxicity studies from 15 drug compounds for the treatment of neurologic or psychiatric conditions were analyzed.
View Article and Find Full Text PDFWhile PIWI-interacting RNAs (piRNAs) are primarily recognized as guardians of genome integrity, new functions of these small non-coding RNAs are emerging. In this issue, Kim et al. (2018) describe a piRNA-based mechanism that limits axon regeneration in C.
View Article and Find Full Text PDFAlthough tctp expression in many areas of the human brain was reported more than 15 years ago, little was known about how it functions in neurons. The early notion that Tctp is primarily expressed in mitotic cells, together with reports suggesting a relative low abundance in the brain, has perhaps potentiated this almost complete disregard for the study of Tctp in the context of neuron biology. However, recent evidence has challenged this view, as a number of independent genome-wide profiling studies identified tctp mRNA among the most enriched in the axonal compartment across diverse neuronal populations, including embryonic retinal ganglion cells.
View Article and Find Full Text PDFNascent proteins can be positioned rapidly at precise subcellular locations by local protein synthesis (LPS) to facilitate localized growth responses. Axon arbor architecture, a major determinant of synaptic connectivity, is shaped by localized growth responses, but it is unknown whether LPS influences these responses in vivo. Using high-resolution live imaging, we examined the spatiotemporal dynamics of RNA and LPS in retinal axons during arborization in vivo.
View Article and Find Full Text PDFThe transcript encoding translationally controlled tumor protein (Tctp), a molecule associated with aggressive breast cancers, was identified among the most abundant in genome-wide screens of axons, suggesting that Tctp is important in neurons. Here, we tested the role of Tctp in retinal axon development in Xenopus laevis We report that Tctp deficiency results in stunted and splayed retinotectal projections that fail to innervate the optic tectum at the normal developmental time owing to impaired axon extension. Tctp-deficient axons exhibit defects associated with mitochondrial dysfunction and we show that Tctp interacts in the axonal compartment with myeloid cell leukemia 1 (Mcl1), a pro-survival member of the Bcl2 family.
View Article and Find Full Text PDF