An intriguing simple toy, commonly known as the Notched Stick, is discussed as an example of a "vibrot", a device designed and built to yield conversion of mechanical vibrations into a rotational motion. The toy, that can be briefly described as a propeller fixed on a stick by means of a nail and free to rotate around it, is investigated from both an experimental and a numerical point of view, under various conditions and settings, to investigate the basic working principles of the device. The conversion efficiency from vibration to rotational motion turns out to be very small, or even not detectable at all, whenever the propeller is tightly connected to the stick nail and perfectly axisymmetrical with respect to the nail axis; the small effects possibly observed can be ascribed to friction forces.
View Article and Find Full Text PDFAxisymmetric drop shape analysis (ADSA) is a well-established methodology for estimating the contact angle value and the surface tension of liquids starting from sessile drops images. It consists of an iterative procedure in which a best fit between a theoretical axisymmetric Laplacian curve and an experimental drop profile is performed. When only an evaluation of the geometric contact angle value is needed, a similar numerical approach can be adopted by using simpler algebraic models in place of a Laplace profile, thus allowing more straightforward implementations and shorter computation times.
View Article and Find Full Text PDFImproved biocompatibility and performance of biomedical devices can be achieved through the incorporation of bioactive molecules on device surfaces. Five structurally distinct pectic polysaccharides (modified hairy regions (MHRs)) were obtained by enzymatic liquefaction of apple (MHR-B, MHR-A and MHR-alpha), carrot (MHR-C) and potato (MHR-P) cells. Polystyrene (PS) Petri dishes, aminated by a plasma deposition process, were surface modified by the covalent linking of the MHRs.
View Article and Find Full Text PDFThree distinct wet chemistry recipes were applied to hydrogen-terminated n- and p-Si(100) surfaces in a comparative study of the covalent grafting of two differently substituted 2,2'-bipyridines. The applied reactions require the use of heat, or visible light under a controlled atmosphere, or a suitable potential in an electrochemical cell. In this last case, hydrogen-terminated silicon is the working electrode in a cathodic electrografting (CEG) reaction, in which it is kept under reduction conditions.
View Article and Find Full Text PDFThe environmental scanning electron microscope (ESEM) represents one of the most exciting breakthroughs in electron microscopy since the invention of the electron microscope. Its ability to observe uncoated and hydrated samples enhances the possibility for investigating the wettability of surfaces at a microscopic level; by varying the relative vapour pressure or the temperature inside the chamber, it is possible to condense water drops on a micron scale. A large problem in measuring contact angles by ESEM is that the observation angle is not parallel or perpendicular to the surface; thus, the study of the droplets profile using the common algorithms such as spherical approximation or axisymmetric drop shape analysis (ADSA) is not possible, because only a spherical cap shape is commonly observed.
View Article and Find Full Text PDFPolystyrene Petri dishes, aminated by a plasma deposition process, were surface modified by the covalent linking of two different enzymatically modified hairy regions (HRs) from pectin containing, for example, rhamnogalacturonan-I and xylogalacturonan structural elements. The two polysaccharide preparations share the same structural elements of apple pectin, but the relative amounts and lengths of the neutral side chains present differ. Surface analysis by X-ray photoelectron spectroscopy, contact angle measurement, and atomic force microscope (AFM) force-separation curves was used to characterize the effects on surface chemistry and interfacial forces of the surface modification process.
View Article and Find Full Text PDFThe control of the protective efficacy obtained on the stone by treatments with polymers is commonly performed through the measure of the static contact angle as it is described by the norm UNI 10921. However this approach does not allow an easy interpretation of the results, because of the porosity and of the heterogeneity of the stone surface, which represent an obstacle to the analysis. Moreover the commonest interpretation of this technique can often bring to important errors.
View Article and Find Full Text PDF