Background And Purpose: We aimed to test whether synthetic T1-weighted imaging derived from a post-contrast Quantitative Transient-state Imaging (QTI) acquisition enabled revealing pathological contrast enhancement in intracranial lesions.
Methods: The analysis included 141 patients who underwent a 3 Tesla-MRI brain exam with intravenous contrast media administration, with the post-contrast acquisition protocol comprising a three-dimensional fast spoiled gradient echo (FSPGR) sequence and a QTI acquisition. Synthetic T1-weighted images were generated from QTI-derived quantitative maps of relaxation times and proton density.
Objectives: The disruption of the blood-brain barrier (BBB) is a key and early feature in the pathogenesis of demyelinating multiple sclerosis (MS) lesions and has been neuropathologically demonstrated in both active and chronic plaques. The local overt BBB disruption in acute demyelinating lesions is captured as signal hyperintensity in post-contrast T1-weighted images because of the contrast-related shortening of the T1 relaxation time. On the contrary, the subtle BBB disruption in chronic lesions is not visible at conventional radiological evaluation but it might be of clinical relevance.
View Article and Find Full Text PDFObjectives: Hereditary spastic paraplegia (HSP) is a group of genetic neurodegenerative diseases characterised by upper motor neuron (UMN) impairment of the lower limbs. The differential diagnosis with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) can be challenging. As microglial iron accumulation was reported in the primary motor cortex (PMC) of ALS cases, here we assessed the radiological appearance of the PMC in a cohort of HSP patients using iron-sensitive MR imaging and compared the PMC findings among HSP, PLS, and ALS patients.
View Article and Find Full Text PDFIntroduction: Computer-Aided Lung Informatics for Pathology Evaluation and Ratings (CALIPER) software has already been widely used in the evaluation of interstitial lung diseases (ILD) but has not yet been tested in patients affected by COVID-19. Our aim was to use it to describe the relationship between Coronavirus Disease 2019 (COVID-19) outcome and the CALIPER-detected pulmonary vascular-related structures (VRS).
Materials And Methods: We performed a multicentric retrospective study enrolling 570 COVID-19 patients who performed a chest CT in emergency settings in two different institutions.