The Ewald method has been the cornerstone in molecular simulations for modeling electrostatic interactions of charge-stabilized many-body systems. In the late 1990s, Wolf and collaborators developed an alternative route to describe the long-range nature of electrostatic interactions; from a computational perspective, this method provides a more efficient and straightforward way to implement long-range electrostatic interactions than the Ewald method. Despite these advantages, the validity of the Wolf potential to account for the electrostatic contribution in charged fluids remains controversial.
View Article and Find Full Text PDFWe report results of a molecular dynamics simulation study of the effect of one general anesthetic, halothane, on some properties of mixed DPPC/DPPE phospholipid membranes. This is a suitable model for the study of simple, two-phospholipid membrane systems. From the simulation runs, we determined several membrane properties for five different molecular proportions of DPPC/DPPE.
View Article and Find Full Text PDFThe topological analysis tool known as the common neighbor analysis (CNA) is used for the first time in this work to analyze crystallization kinetics and excess entropy of charge-stabilized colloidal suspensions. For this purpose, Brownian dynamics computer simulations are implemented to investigate the crystallization kinetics of homogeneously melted colloidal crystals that are composed of hard-core-screened-Coulomb interacting particles. The results are in agreement with recent static structure factor measurements that could indicate the presence of icosahedral units in the metastable melt, and with the fact that weakly screened charged colloids crystallize into body-centered-cubic (bcc) ordering.
View Article and Find Full Text PDFThe long-time self-diffusion coefficient, D(L), of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that D(L) is strongly controlled by the separation between layers.
View Article and Find Full Text PDFOn the basis of a versatile mode-coupling theory (MCT) method developed in Paper I [C. Contreras Aburto and G. Nägele, J.
View Article and Find Full Text PDFWe develop a general method for calculating conduction-diffusion transport properties of strong electrolyte mixtures, including specific conductivities, steady-state electrophoretic mobilities, and self-diffusion coefficients. The ions are described as charged Brownian spheres, and the solvent-mediated hydrodynamic interactions (HIs) are also accounted for in the non-instantaneous ion atmosphere relaxation effect. A linear response expression relating long-time partial mobilities to associated dynamic structure factors is employed in our derivation of a general mode coupling theory (MCT) method for the conduction-diffusion properties.
View Article and Find Full Text PDFWe present a versatile theoretical method for calculating the steady-state viscosity and shear relaxation function of strong electrolyte solutions. In this method, the ions are described on a primitive model level as charged Brownian spheres, and the essential ion-ion hydrodynamic interactions (HIs) are accounted for in the shear relaxation effect of the ionic atmosphere. The method combines a many-component mode-coupling theory (MCT) approach by Nägele et al (1998 J.
View Article and Find Full Text PDF