Nitrogen removal via anammox is efficient but challenged by their slow growth. Adding granular activated carbon (GAC) increased the total nitrogen removal rate to 66.99 g-N/m/day, compared to 50.
View Article and Find Full Text PDFWidespread pesticide use in agriculture is a major source of soil pollution, driving biodiversity loss and posing serious threads to human health. The recalcitrant nature of most of these pesticides demands for effective remediation strategies. In this study, we assess the ability of soil microbial fuel cell (SMFC) technology to bioremediate soil polluted by the model pesticide atrazine.
View Article and Find Full Text PDFA 30-month pilot study was conducted to evaluate the potential of in-situ metal(loid) removal through biostimulation of sulfate-reducing processes. The study took place at an industrial site in Flanders, Belgium, known for metal(loid) contamination in soil and groundwater. Biostimulation involved two incorporations of an organic substrate (emulsified vegetable oil) as electron donor and potassium bicarbonate to raise the pH of the groundwater by 1-1.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2023
We present in this work a kinetic model of the acetone-butanol-ethanol (ABE) fermentation based on enzyme kinetics expressions. The model includes the effect of the co-substrate NADH as a modulating factor of cellular metabolism. The simulations obtained with the model showed an adequate fit to the experimental data reported by several authors, matching or improving the results observed with previous models.
View Article and Find Full Text PDFThe need for greener processes to satisfy the demand of platform chemicals together with the possibility of reusing CO from human activities has recently encouraged research on the set-up, optimization, and development of bioelectrochemical systems (BESs) for the electrosynthesis of organic compounds from inorganic carbon (CO, HCO). In the present study, we tested the ability of N1-4 (DSMZ 14923) to produce acetate and D-3-hydroxybutyrate from inorganic carbon present in a CO:N gas mix. At the same time, we tested the ability of a MR1 and PA1430/CO1 consortium to provide reducing power to sustain carbon assimilation at the cathode.
View Article and Find Full Text PDFIn recent years, microbial electrochemical systems (MESs) have demonstrated to be an environmentally friendly technology for wastewater treatment and simultaneous production of value-added products or energy. However, practical applications of MESs for the treatment of recalcitrant wastewater are limited by their low power output and slow rates of pollutant biodegradation. As a novel technology, hybrid MESs integrating biodegradation and photocatalysis have shown great potential to accelerate the degradation of bio-recalcitrant pollutants and increase the system output.
View Article and Find Full Text PDFThe rapid emergence of antibiotic resistant bacterial pathogens constitutes a critical problem in healthcare and requires the development of novel treatments. Potential strategies include the exploitation of microbial social interactions based on public goods, which are produced at a fitness cost by cooperative microorganisms, but can be exploited by cheaters that do not produce these goods. Cheater invasion has been proposed as a 'Trojan horse' approach to infiltrate pathogen populations with strains deploying built-in weaknesses (e.
View Article and Find Full Text PDFThis work reports the influence of ultrasound alone and combined with ozone for the treatment of real abattoir wastewater. Three different frequencies were studied (44, 300 and 1000 kHz) at an applied power of 40 W. The injected ozone dose was fixed at 71 mg/L and the treatment time varied from 1 to 60 min.
View Article and Find Full Text PDFElucidating the effect of harsh environments on the activities of microorganisms is important in revealing how microbes withstand unfavorable conditions or evolve mechanisms to counteract those effects, many of which involve electron transfer phenomena. Here we show that the non-acidophilic and non-thermophilic Bacillus subtilis is able to maintain activity after being subjected to extreme temperatures (100°C for up to 8 h) and acidic environments (pH = 1.50 for over 2 years).
View Article and Find Full Text PDFIn this work, we expanded and updated a genome-scale metabolic model of Streptomyces clavuligerus. The model includes 1021 genes and 1494 biochemical reactions; genome-reaction information was curated and new features related to clavam metabolism and to the biomass synthesis equation were incorporated. The model was validated using experimental data from the literature and simulations were performed to predict cellular growth and clavulanic acid biosynthesis.
View Article and Find Full Text PDFOleaginous microorganisms represent possible platforms for the sustainable production of oleochemicals and biofuels due to their metabolic robustness and the possibility to be engineered. is among the narrow group of prokaryotes capable of accumulating triacylglycerol (TAG) as carbon and energy reserve. Although the pathways for TAG biosynthesis in this organism have been widely addressed, the set of genes required for their breakdown have remained elusive so far.
View Article and Find Full Text PDFThis study investigates the microbial community composition in the biofilms grown on two different support media in fixed biofilm reactors for aerobic wastewater treatment, using next generation sequencing (NGS) technology. The chemical composition of the new type of support medium (TDR) was found to be quite different from the conventionally used support medium (stone). The analysis of 16S rRNA gene fragments recovered from the laboratory scale biofilm system show that biofilm support media and temperature conditions influence bacterial community structure and composition.
View Article and Find Full Text PDFThe chassis is the cellular host used as a recipient of engineered biological systems in synthetic biology. They are required to propagate the genetic information and to express the genes encoded in it. Despite being an essential element for the appropriate function of genetic circuits, the chassis is rarely considered in their design phase.
View Article and Find Full Text PDFIn this paper, we analyse how electric power production in microbial fuel cells (MFCs) depends on the composition of the anodic biofilm in terms of metabolic capabilities of identified sets of species. MFCs are a promising technology for organic waste treatment and sustainable bioelectricity production. Inoculated with natural communities, they present a complex microbial ecosystem with syntrophic interactions between microbes with different metabolic capabilities.
View Article and Find Full Text PDFThe relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species.
View Article and Find Full Text PDFThe performance and dynamics of the bacterial communities in the biofilm and suspended culture in the anode chamber of sucrose-fed microbial fuel cells (MFCs) were studied by using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes followed by species identification by sequencing. The power density of MFCs was correlated to the relative proportions of species obtained from DGGE analysis in order to detect bacterial species or taxonomic classes with important functional role in electricity production. Although replicate MFCs showed similarity in performance, cluster analysis of DGGE profiles revealed differences in the evolution of bacterial communities between replicate MFCs.
View Article and Find Full Text PDFBackground: Constraint-based approaches facilitate the prediction of cellular metabolic capabilities, based, in turn on predictions of the repertoire of enzymes encoded in the genome. Recently, genome annotations have been used to reconstruct genome scale metabolic reaction networks for numerous species, including Homo sapiens, which allow simulations that provide valuable insights into topics, including predictions of gene essentiality of pathogens, interpretation of genetic polymorphism in metabolic disease syndromes and suggestions for novel approaches to microbial metabolic engineering. These constraint-based simulations are being integrated with the functional genomics portals, an activity that requires efficient implementation of the constraint-based simulations in the web-based environment.
View Article and Find Full Text PDFThe spatiotemporal development of a bacterial community in an exoelectrogenic biofilm was investigated in sucrose-fed longitudinal tubular microbial fuel cell reactors, consisting of two serially connected modules. The proportional changes in the microbial community composition were assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) and DNA sequencing in order to relate them to the performance and stability of the bioelectrochemical system. The reproducibility of duplicated reactors, evaluated by cluster analysis and Jaccard's coefficient, shows 80-90% similarity in species composition.
View Article and Find Full Text PDFUnlabelled: Constraint-based modeling of genome-scale metabolic networks has been successfully used in numerous applications such as prediction of gene essentiality and metabolic engineering. We present SurreyFBA, which provides constraint-based simulations and network map visualization in a free, stand-alone software. In addition to basic simulation protocols, the tool also implements the analysis of minimal substrate and product sets, which is useful for metabolic engineering and prediction of nutritional requirements in complex in vivo environments, but not available in other commonly used programs.
View Article and Find Full Text PDFThe construction and characterization of a one-compartment fructose/air biological fuel cell (BFC) based on direct electron transfer is reported. The BFC employs bilirubin oxidase and d-fructose dehydrogenase adsorbed on a cellulose-multiwall carbon nanotube (MWCNT) matrix, reconstituted with an ionic liquid, as the biocathode and the bioanode for oxygen reduction and fructose oxidation reactions, respectively. The performance of the bioelectrode was investigated by chronoamperometric and cyclic voltammetric techniques in a standard three-electrode cell, and the polarization and long-term stability of the BFC was tested by potentiostatic discharge.
View Article and Find Full Text PDFConductive cellulose-multiwalled carbon nanotube (MWCNT) matrix with a porous structure and good biocompatibility has been prepared using a room temperature ionic liquid (1-ethyl-3-methylimidazolium acetate) as solvent. Glucose oxidase (GOx) was encapsulated in this matrix and thereby immobilized on a glassy carbon surface. The direct electron transfer and electrocatalysis of the encapsulated GOx has been investigated using cyclic voltammetry and chronoamperometry.
View Article and Find Full Text PDFA microbial fuel cell (MFC) has been developed for removal of sulfur-based pollutants and can be used for simultaneous wastewater treatment and electricity generation. This fuel cell uses an activated carbon cloth+carbon fibre veil composite anode, air-breathing dual cathodes and the sulfate-reducing species Desulfovibrio desulfuricans. 1.
View Article and Find Full Text PDFBy employing the sulfate-reducing bacterium Desulfovibrio desulfuricans we demonstrate the possibility of electricity generation in a microbialfuel cell (MFC) with concomitant sulfate removal. This approach is based on an in situ anodic oxidative depletion of sulfide produced by D. desulfuricans.
View Article and Find Full Text PDF