Publications by authors named "Claudio Amovilli"

A method formulated within the polarizable continuum model of the solvent and a quantum Monte Carlo treatment of the electronic states of the solute molecule is presented for the calculation of the solute-solvent dispersion contribution to the electronic excitation energy in solution. Variational quantum Monte Carlo is exploited to measure the fluctuations of the electronic electric field of the solute molecule to compute the London's dispersion forces with the solvent. The method previously applied to the ground state of the solute is here extended to excited states.

View Article and Find Full Text PDF

We present for the first time a quantum mechanics/molecular mechanics scheme which combines quantum Monte Carlo with the reaction field of classical polarizable dipoles (QMC/MMpol). In our approach, the optimal dipoles are self-consistently generated at the variational Monte Carlo level and then used to include environmental effects in diffusion Monte Carlo. We investigate the performance of this hybrid model in describing the vertical excitation energies of prototypical small molecules solvated in water, namely, methylenecyclopropene and s-trans acrolein.

View Article and Find Full Text PDF

We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions.

View Article and Find Full Text PDF

We present the first application of quantum Monte Carlo (QMC) in its variational flavor combined with the polarizable continuum model (PCM) to perform excited-state geometry optimization in solution. Our implementation of the PCM model is based on a reaction field that includes both volume and surface polarization charges and is determined self-consistently with the molecular wave function during the QMC optimization of the solute geometry. For acrolein, acetone, methylenecyclopropene, and the propenoic acid anion, we compute the optimal exited-state geometries in water and compare our results with the structures obtained with second-order perturbation theory (CASPT2) and other correlated methods, and with time-dependent density functional theory (TDDFT).

View Article and Find Full Text PDF

We investigate here the vertical n → π(*) and π → π(*) transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme.

View Article and Find Full Text PDF

We present a general method to compute dispersion interaction energy that, starting from London's interpretation, is based on the measure of the electronic electric field fluctuations, evaluated on electronic sampled configurations generated by quantum Monte Carlo. A damped electric field was considered in order to avoid divergence in the variance. Dispersion atom-atom C6 van der Waals coefficients were computed by coupling electric field fluctuations with static dipole polarizabilities.

View Article and Find Full Text PDF

In nonpolar solvents, both electrostatic and nonelectrostatic interactions play a role in tuning the electronic excitations of molecular solutes. This specificity makes the application of continuum solvation models a challenge. Here, we propose a strategy for the calculation of solvatochromic shifts on absorption spectra, using a coupling of the polarizable continuum model with a time-dependent density functional theory framework, which explicitly accounts for dispersion and repulsion, as well as for electrostatic effects.

View Article and Find Full Text PDF

We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we develop a multilevel scheme to treat different regions of the molecule at different levels of the theory. As prototypical study case, we investigate the decomposition of α-hydroxy-dimethylnitrosamine, a carcinogenic metabolite of dimethylnitrosamine (NDMA), through a two-step mechanism of isomerization followed by a retro-ene reaction.

View Article and Find Full Text PDF

We investigate here the performance of our recently developed linear-scaling Jastrow-generalized-valence-bond (J-LGVB) wave functions based on localized orbitals, for the quantum Monte Carlo (QMC) calculation of the barrier heights and reaction energies of five prototypical chemical reactions. Using the geometrical parameters from the Minnesota database collection, we consider three hydrogen-exchanges, one heavy-atom exchange, and one association reaction and compare our results with the best available experimental and theoretical data. For the three hydrogen-exchange reactions, we find that the J-LGVB wave functions yield excellent QMC results, with average deviations from the reference values below 0.

View Article and Find Full Text PDF

We present density functional theory (DFT) and quantum Monte Carlo (QMC) calculations of the glutamic acid and glutamate ion in vacuo and in various dielectric continuum media within the polarizable continuum model (PCM). In DFT, we employ the integral equation formalism variant of PCM while, in QMC, we use a PCM scheme we have developed to include both surface and volume polarization. We investigate the gas-phase protonation thermochemistry of the glutamic acid using a large set of structural conformations, and find that QMC is in excellent agreement with the best available theoretical and experimental results.

View Article and Find Full Text PDF

We propose a new class of multideterminantal Jastrow-Slater wave functions constructed with localized orbitals and designed to describe complex potential energy surfaces of molecular systems for use in quantum Monte Carlo (QMC). Inspired by the generalized valence bond formalism, we elaborate a coupling scheme between electron pairs which progressively includes new classes of excitations in the determinantal component of the wave function. In this scheme, we exploit the local nature of the orbitals to construct wave functions which have increasing complexity but scale linearly.

View Article and Find Full Text PDF

We present a novel formulation based on quantum Monte Carlo techniques for the treatment of volume polarization due to quantum mechanical penetration of the solute charge density in the solvent domain. The method allows to accurately solve Poisson's equation of the solvation model coupled with the Schrodinger equation for the solute. We demonstrate the performance of the approach on a representative set of solutes in water solvent and give a detailed analysis of the dependence of the volume polarization on the solute cavity and the treatment of electron correlation.

View Article and Find Full Text PDF

Starting from the nonlinear dielectric response model of Sandberg and Edholm, we derive an analytical expression of the polarization contribution to the solvation free energy in terms of the electronic density of the solute and the dielectric properties of the solvent. The solvent inhomogeneity is taken into account with the use of a smooth switching function whose spacial variation is established on the basis of how the solvent is arranged around the solute. An explicit form of a local potential representing the solvent effect on the solute is thus obtained by functional analysis.

View Article and Find Full Text PDF