dsRNA-dependent protein kinase R (PKR) is a key factor of innate immunity. It is involved in translation inhibition, apoptosis, and enhancement of the proinflammatory and IFN responses. However, how these antiviral functions are conserved during evolution remains largely unknown.
View Article and Find Full Text PDFBackground: Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most challenging infectious disease of pig populations causing devastating economic loss to swine industry. Reverse genetics allow to engineer modified viruses such attenuated strains for vaccine development. Some reverse genetic systems were described for PRRSVs but, due to genome complexity of PRRSVs, construction and modification of such systems remain laborious and time-consuming.
View Article and Find Full Text PDFTo seek alterations in gene transcription in bone marrow cells following in vivo exposure of juvenile mice to power frequency magnetic fields, young (21-24-day old) C57BL/6 mice were exposed to a 100μT 50Hz magnetic field for 2h. Transcription was analysed by three methods, High Coverage Expression Profiling (HiCEP), Illumina microarrays and quantitative real-time polymerase chain reaction (QRT-PCR). A pilot HiCEP experiment with 6 exposed (E) and 6 non-exposed (NE) mice identified four candidate responsive transcripts (two unknown transcripts (AK152075 and F10-NED), phosphatidylinositol binding clathrin assembly protein (Picalm) and exportin 7 (Xpo7)).
View Article and Find Full Text PDFBackground And Purpose: Identification of mechanisms of late normal tissue responses to curative radiotherapy that discriminate individuals with marked or mild responses would aid response prediction. This study aimed to identify differences in gene expression, apoptosis, residual DNA double strand breaks and chromosomal damage after in vitro irradiation of lymphocytes in a series of patients with marked (31 cases) or mild (28 controls) late adverse reaction to adjuvant breast radiotherapy.
Materials And Methods: Gene expression arrays, residual γH2AX, apoptosis, G2 chromosomal radiosensitivity and G0 micronucleus assay were used to compare case and control lymphocyte radiation responses.
Genetic factors are likely to affect individual cancer risk, but few quantitative estimates of heritability are available. Public health radiation protection policies do not in general take this potentially important source of variation in risk into account. Two surrogate cellular assays that relate to cancer susceptibility have been developed to gain an insight into the role of genetics in determining individual variation in radiosensitivity.
View Article and Find Full Text PDF