A major deleterious side effect of glucocorticoids is skin atrophy. Glucocorticoids activate the glucocorticoid and the mineralocorticoid (MR) receptor, both present in the epidermis. We hypothesized that glucocorticoid-induced epidermal atrophy may be related to inappropriate occupancy of MR by glucocorticoids.
View Article and Find Full Text PDFMineralocorticoid receptor (MR) activation may be deleterious to the cardiovascular system, and MR antagonists improve morbidity and mortality of patients with heart failure. However, mineralocorticoid signaling in the heart remains largely unknown. Using a pan-genomic transcriptomic analysis, we identified neutrophil gelatinase-associated lipocalin (NGAL or lipocalin 2) as a strongly induced gene in the heart of mice with conditional and targeted MR overexpression in cardiomyocytes (whereas induction was low in glucocorticoid receptor-overexpressing mice).
View Article and Find Full Text PDFPathophysiological aldosterone (aldo)/mineralocorticoid receptor signaling has a major impact on the cardiovascular system, resulting in hypertension and vascular remodeling. Mineralocorticoids induce endothelial dysfunction, decreasing vasorelaxation in response to acetylcholine and increasing the response to vasoconstrictors. Activation of the epidermal growth factor receptor (EGFR) is thought to mediate the vascular effects of aldo, but this has yet to be demonstrated in vivo.
View Article and Find Full Text PDFMyocardial infarction causes neurohormonal activation involving aldosterone and angiotensin II (AngII). These hormones may increase arterial stiffness, an independent cardiovascular risk factor contributing to progression of congestive heart failure (CHF). This study aimed to determine the effect of aldosterone and AngII blockade on carotid artery distensibility and collagen density in adult Wistar rats with MI-induced CHF.
View Article and Find Full Text PDF