Background: Myocardial infarction (MI) is the primary cause of death in subjects with type 2 diabetes (T2D) and their in-hospital mortality after MI is still elevated compared with those without T2D. Therefore, it is of crucial importance to identify possible mechanisms of worse clinical outcomes and mortality in T2D subjects. Monocyte/macrophage-mediated immune response plays an important role in heart remodelling to limit functional deterioration after MI.
View Article and Find Full Text PDFType 2 diabetes patients are less likely to develop an abdominal aortic aneurysm (AAA). Since macrophages play a crucial role in AAA development, we hypothesized that this decrease in AAA risk in diabetic patients might be due to diabetes-induced changes in macrophage biology. To test this hypothesis, we treated primary macrophages obtained from healthy human volunteers with serum from non-diabetic vs.
View Article and Find Full Text PDFInt J Mol Sci
October 2021
Synthetic ligands of peroxisome-proliferator-activated receptor beta/delta (PPARβ/δ) are being used as performance-enhancing drugs by athletes. Since we previously showed that PPARβ/δ activation affects T cell biology, we wanted to investigate whether a specific blood T cell signature could be employed as a method to detect the use of PPARβ/δ agonists. We analyzed in primary human T cells the in vitro effect of PPARβ/δ activation on fatty acid oxidation (FAO) and on their differentiation into regulatory T cells (Tregs).
View Article and Find Full Text PDFFibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFβ1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin-angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages.
View Article and Find Full Text PDFBackground/aims: Fibro-adipogenic progenitors (FAPs), a muscle-resident stem cell population, have recently emerged as important actors of muscle regeneration by interacting with myogenic progenitors (MPs) to promote the formation of new muscle fibers. However, FAPs are also considered as main contributors of intramuscular fibrotic and fat depositions, resulting in a poor quality of muscles and a defective regeneration in aging and Duchenne Muscular Dystrophy disease (DMD). Therefore, the understanding of the control of FAP fate is an important aspect of muscle repair and homeostasis, but little is known in humans.
View Article and Find Full Text PDFObjectives: The potential implication of micro-RNAs (miRs) in the negative association between diabetes and abdominal aortic aneurysm (AAA) has so far never been addressed. The aim of this study was to compare miR expression between diabetic and non-diabetic patients with AAA.
Methods: Ten diabetic patients were prospectively included and compared to 10 age- and sex-matched non-diabetic patients with infrarenal AAA.
Objective: Macrophages play a critical role in the initiation and progression of abdominal aortic aneurysm (AAA) and are classically distinguished into M1 "proinflammatory" and M2 "anti-inflammatory" macrophages. Topical application of elastase associated with transforming growth factor β (TGF-β) systemic neutralization reproduces the main pathologic features of human AAA, offering a new model to investigate their role. The aim of this study was to investigate whether macrophages contribute to the expression of canonical M1/M2 markers in the aorta in the AAA model induced by elastase and systemic blockade of TGF-β and whether blocking of TGF-β activity affects macrophage phenotype and the expression of the M2 marker arginase 1 (ARG1).
View Article and Find Full Text PDFIntroduction: Epidemiological studies have highlighted a negative association between diabetes and abdominal aortic aneurysm (AAA). The aim of this study was to investigate the association between insulin resistance and AAA size.
Materials And Methods: This prospective cross sectional monocentric study analysed fasting blood samples from 55 patients with AAA eligible for surgical repair.
Introduction:: Clinical studies have unraveled a negative association between diabetes and abdominal aortic aneurysm (AAA), but the mechanisms involved are still poorly understood. The aim of this study was to determine whether diabetic patients with AAA had a distinct plasma inflammatory profile compared to nondiabetic patients.
Methods:: Plasma samples were obtained from 10 diabetic patients with AAA and 10 nondiabetic patients with AAA.
M-CSF and G-CSF are instructive cytokines that specifically induce differentiation of bipotent myeloid progenitors into macrophages and granulocytes, respectively. Through morphology and colony assay studies, flow cytometry analysis of specific markers, and expression of myeloid transcription factors, we show here that the Eger/Fms cell line is composed of cells whose differentiation fate is instructed by M-CSF and G-CSF, thus representing a good in vitro model of myeloid bipotent progenitors. Consistent with the essential role of ERK1/2 during macrophage differentiation and defects of macrophagic differentiation in native ERK1(-/-) progenitors, ERK signaling is strongly activated in Eger/Fms cells upon M-CSF-induced macrophagic differentiation but only to a very small extent during G-CSF-induced granulocytic differentiation.
View Article and Find Full Text PDFJAK2 inhibition therapy is used to treat patients suffering from myeloproliferative neoplasms (MPN). Conflicting data on this therapy are reported possibly linked to the types of inhibitors or disease type. Therefore, we decided to compare in mice the effect of a JAK2 inhibitor, Fedratinib, in MPN models of increasing severity: polycythemia vera (PV), post-PV myelofibrosis (PPMF) and rapid post-essential thrombocythemia MF (PTMF).
View Article and Find Full Text PDF