Cerebrovascular reactivity (CVR) and cerebral pulsatility (CP) are important indicators of cerebrovascular health and have been shown to be associated with physical activity (PA). Sex differences have been shown to influence the impact of PA on cerebrovascular health. However, the sex-specific effects of PA on CP and CVR, particularly in relation to intensity and dosage of PA, remains unknown.
View Article and Find Full Text PDFThe neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD.
View Article and Find Full Text PDFMultivariate approaches have recently gained in popularity to address the physiological unspecificity of neuroimaging metrics and to better characterize the complexity of biological processes underlying behavior. However, commonly used approaches are biased by the intrinsic associations between variables, or they are computationally expensive and may be more complicated to implement than standard univariate approaches. Here, we propose using the Mahalanobis distance (D2), an individual-level measure of deviation relative to a reference distribution that accounts for covariance between metrics.
View Article and Find Full Text PDFElevated iron deposition in the brain has been observed in older adult humans and persons with Alzheimer's disease (AD), and has been associated with lower cognitive performance. We investigated the impact of iron deposition, and its topographical distribution across hippocampal subfields and segments (anterior, posterior) measured along its longitudinal axis, on episodic memory in a sample of cognitively unimpaired older adults at elevated familial risk for AD ( = 172, 120 females, 52 males; mean age = 68.8 ± 5.
View Article and Find Full Text PDFHum Brain Mapp
March 2024
Decreased long-range temporal correlations (LRTC) in brain signals can be used to measure cognitive effort during task execution. Here, we examined how learning a motor sequence affects long-range temporal memory within resting-state functional magnetic resonance imaging signal. Using the Hurst exponent (HE), we estimated voxel-wise LRTC and assessed changes over 5 consecutive days of training, followed by a retention scan 12 days later.
View Article and Find Full Text PDFResting-state (rs) functional magnetic resonance imaging (fMRI) is used to detect low-frequency fluctuations in the blood oxygen-level dependent (BOLD) signal across brain regions. Correlations between temporal BOLD signal fluctuations are commonly used to infer functional connectivity. However, because BOLD is based on the dilution of deoxyhemoglobin, it is sensitive to veins of all sizes, and its amplitude is biased by draining veins.
View Article and Find Full Text PDFBackground Lower cerebral blood flow (CBF) has previously been documented preoperatively in neonates with congenital heart disease (CHD). However, it remains unclear if these CBF deficits persist over the life span of CHD survivors following heart surgery. When exploring this question, it is critical to consider the sex differences in CBF that emerge during adolescence.
View Article and Find Full Text PDFIndependently, obesity and physical activity (PA) influence cerebral structure in aging, yet their interaction has not been investigated. We examined sex differences in the relationships among PA, obesity, and cerebral structure in aging with 340 participants who completed magnetic resonance imaging (MRI) acquisition to quantify grey matter volume (GMV) and white matter volume (WMV). Height and weight were measured to calculate body mass index (BMI).
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
March 2023
Introduction: Schizophrenia-spectrum disorders (SSD) represent one of the leading causes of disability worldwide and are usually underpinned by neurodevelopmental brain abnormalities observed on a structural and functional level. Nuclear medicine imaging studies of cerebral blood flow (CBF) have already provided insights into the pathophysiology of these disorders. Recent developments in non-invasive MRI techniques such as arterial spin labeling (ASL) have allowed broader examination of CBF across SSD prompting us to conduct an updated literature review of MRI-based perfusion studies.
View Article and Find Full Text PDFBackground: Physical inactivity significantly increases risk of cardiovascular diseases, which are highly prevalent in aging. Conversely, higher levels of physical activity in aging have been associated with benefits for physical and cognitive health and is hypothesized to prevent and reduce development of cardiovascular risk factors. However, those older adults with the highest activity levels (i.
View Article and Find Full Text PDFIn motor learning, sequence specificity, i.e. the learning of specific sequential associations, has predominantly been studied using task-based fMRI paradigms.
View Article and Find Full Text PDFAging is associated with cognitive decline. Importantly cognition and cerebral health is enhanced with interventions like cognitive (CT) and exercise training (ET). However, effects of CT and ET interventions on brain magnetic resonance imaging outcomes have never been compared systematically.
View Article and Find Full Text PDFEfficient neural transmission is crucial for optimal brain function, yet the plastic potential of white matter (WM) has long been overlooked. Growing evidence now shows that modifications to axons and myelin occur not only as a result of long-term learning, but also after short training periods. Motor sequence learning (MSL), a common paradigm used to study neuroplasticity, occurs in overlapping learning stages and different neural circuits are involved in each stage.
View Article and Find Full Text PDFTask and resting-state functional MRI (fMRI) is primarily based on the same blood-oxygenation level-dependent (BOLD) phenomenon that MRI-based cerebrovascular reactivity (CVR) mapping has most commonly relied upon. This technique is finding an ever-increasing role in neuroscience and clinical research as well as treatment planning. The estimation of CVR has unique applications in and associations with fMRI.
View Article and Find Full Text PDFBackground: Vascular risk factors such as arterial stiffness play an important role in the etiology of Alzheimer's disease (AD), presumably due to the emergence of white matter lesions. However, the impact of arterial stiffness to white matter structure involved in the etiology of AD, including the corpus callosum remains poorly understood.
Objective: The aims of the study are to better understand the relationship between arterial stiffness, white matter microstructure, and perfusion of the corpus callosum in older adults.
In this work, a novel technique for real-time clutter rejection in ultrasound Color Flow Imaging (CFI) is proposed. Suppressing undesired clutter signal is important because clutter prohibits an unambiguous view of the vascular network. Although conventional eigen-based filters are potentially efficient in suppressing clutter signal, their performance is highly dependent on proper selection of a clutter to blood boundary which is done manually.
View Article and Find Full Text PDFAging is accompanied by vascular and structural changes in the brain, which include decreased grey matter volume (GMV), cerebral blood flow (CBF), and cerebrovascular reactivity (CVR). Enhanced fitness in aging has been related to preservation of GMV and CBF, and in some cases CVR, although there are contradictory relationships reported between CVR and fitness. To gain a better understanding of the complex interplay between fitness and GMV, CBF and CVR, the present study assessed these factors concurrently.
View Article and Find Full Text PDFThe vascular organization of the human brain can determine neurological and neurophysiological functions, yet thus far it has not been comprehensively mapped. Aging and diseases such as dementia are known to be associated with changes to the vasculature and normative data could help detect these vascular changes in neuroimaging studies. Furthermore, given the well-known impact of venous vessels on the blood oxygen level dependent (BOLD) signal, information about the common location of veins could help detect biases in existing datasets.
View Article and Find Full Text PDFBackground: Given the increasing incidence of vascular diseases and dementia, a better understanding of the cerebrovascular changes induced by arterial stiffness is important for early identification of white and gray matter abnormalities that might antedate the appearance of clinical cognitive symptoms. Here, we review the evidence from neuroimaging demonstrating the impact of arterial stiffness on the aging brain.
Method: This review presents findings from recent studies examining the association between arterial stiffness, cognitive function, cerebral hypoperfusion, and markers of neuronal fiber integrity using a variety of MRI techniques.
IEEE Trans Ultrason Ferroelectr Freq Control
May 2019
In this paper, a novel computationally efficient quasi-static ultrasound elastography technique is introduced by optimizing an energy function. Unlike conventional elastography techniques, three radio frequency (RF) frames are considered to devise a nonlinear cost function consisting of data intensity similarity term, spatial regularization terms and, most importantly, temporal continuity terms. We optimize the aforesaid cost function efficiently to obtain the time-delay estimation (TDE) of all samples between the first two and last two frames of ultrasound images simultaneously, and spatially differentiate the TDE to generate axial strain map.
View Article and Find Full Text PDFRecent clinical trials of new revascularization therapies in acute ischemic stroke have highlighted the importance of physiological imaging to identify optimal treatments for patients. Oxygen extraction fraction (OEF) is a hallmark of at-risk tissue in stroke, and can be quantified from the susceptibility effect of deoxyhemoglobin molecules in venous blood on MRI phase scans. We measured OEF within cerebral veins using advanced quantitative susceptibility mapping (QSM) MRI reconstructions in 20 acute stroke patients.
View Article and Find Full Text PDFA host of studies support that younger, better performing adults express greater moment-to-moment blood oxygen level-dependent (BOLD) signal variability (SD) in various cortical regions, supporting an emerging view that the aging brain may undergo a generalized reduction in dynamic range. However, the exact physiological nature of age differences in SD remains understudied. In a sample of 29 younger and 45 older adults, we examined the contribution of vascular factors to age group differences in fixation-based SD using (1) a dual-echo BOLD/pseudo-continuous arterial spin labeling (pCASL) sequence, and (2) hypercapnia via a computer-controlled gas delivery system.
View Article and Find Full Text PDFDisentangling neural activity at different cortical depths during a functional task has recently generated growing interest, since this would allow to separate feedforward and feedback activity. The majority of layer-dependent studies have, so far, relied on gradient-recalled echo (GRE) blood-oxygenation-level dependent (BOLD) acquisitions, which are weighted towards the large draining veins at the cortical surface. The current study aims to obtain quantitative brain activity responses in the primary motor cortex on a laminar scale without the contamination due to accompanying secondary vascular effects.
View Article and Find Full Text PDF