The standard of care for glioblastoma (GBM) involves surgery followed by adjuvant radio- and chemotherapy, but often within months, patients relapse, and this has been linked to glioma stem cells (GSCs), self-renewing cells with increased therapy resistance. The identification of the epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR) as key players in gliomagenesis inspired the development of inhibitors targeting these tyrosine kinases (TKIs). However, results from clinical trials testing TKIs have been disappointing, and while the role of GSCs in conventional therapy resistance has been extensively studied, less is known about resistance of GSCs to TKIs.
View Article and Find Full Text PDFResistance of melanoma to targeted therapy and immunotherapy is linked to metabolic rewiring. Here, we show that increased fatty acid oxidation (FAO) during prolonged BRAF inhibitor (BRAFi) treatment contributes to acquired therapy resistance in mice. Targeting FAO using the US Food and Drug Administration-approved and European Medicines Agency-approved anti-anginal drug ranolazine (RANO) delays tumour recurrence with acquired BRAFi resistance.
View Article and Find Full Text PDFCirculating tumor cells are the key link between a primary tumor and distant metastases, but once in the bloodstream, loss of adhesion induces cell death. To identify the mechanisms relevant for melanoma circulating tumor cell survival, we performed RNA sequencing and discovered that detached melanoma cells and isolated melanoma circulating tumor cells rewire lipid metabolism by upregulating fatty acid (FA) transport and FA beta-oxidation‒related genes. In patients with melanoma, high expression of FA transporters and FA beta-oxidation enzymes significantly correlates with reduced progression-free and overall survival.
View Article and Find Full Text PDFDysregulated cellular metabolism is a cancer hallmark for which few druggable oncoprotein targets have been identified. Increased fatty acid (FA) acquisition allows cancer cells to meet their heightened membrane biogenesis, bioenergy, and signaling needs. Excess FAs are toxic to non-transformed cells but surprisingly not to cancer cells.
View Article and Find Full Text PDFCutaneous melanoma is one of the most aggressive human malignancies and shows increasing incidence. Mast cells (MCs), long-lived tissue-resident cells that are particularly abundant in human skin where they regulate both innate and adaptive immunity, are associated with melanoma stroma (MAMCs). Thus, MAMCs could impact melanoma development, progression, and metastasis by secreting proteases, pro-angiogenic factors, and both pro-inflammatory and immuno-inhibitory mediators.
View Article and Find Full Text PDF(1) Background: Despite the indisputable effectiveness of dexamethasone (DEXA) to reduce inflammation in glioblastoma (GBM) patients, its influence on tumour progression and radiotherapy response remains controversial. (2) Methods: We analysed patient data and used expression and cell biological analyses to assess effects of DEXA on GBM cells. We tested the efficacy of tyrosine kinase inhibitors in vitro and in vivo.
View Article and Find Full Text PDFPigment Cell Melanoma Res
September 2020
A major challenge for managing melanoma is its tumour heterogeneity based on individual co-existing melanoma cell phenotypes. These phenotypes display variable responses to standard therapies, and they drive individual steps of melanoma progression; hence, understanding their behaviour is imperative. Melanoma phenotypes are defined by distinct transcriptional states, which relate to different melanocyte lineage development phases, ranging from a mesenchymal, neural crest-like to a proliferative, melanocytic phenotype.
View Article and Find Full Text PDFMelanoma is the deadliest form of skin cancer; a primary driver of this high level of morbidity is the propensity of melanoma cells to metastasize. When malignant tumours develop distant metastatic lesions the new local tissue niche is known to impact on the biology of the cancer cells. However, little is known about how different metastatic tissue sites impact on frontline targeted therapies.
View Article and Find Full Text PDFMalignant melanoma is notorious for its inter- and intratumour heterogeneity, based on transcriptionally distinct melanoma cell phenotypes. It is thought that these distinct phenotypes are plastic in nature and that their transcriptional reprogramming enables heterogeneous tumours both to undergo different stages of melanoma progression and to adjust to drug exposure during treatment. Recent advances in genomic technologies and the rapidly expanding availability of large gene expression datasets have allowed for a refined definition of the gene signatures that characterize these phenotypes and have revealed that phenotype plasticity plays a major role in the resistance to both targeted therapy and immunotherapy.
View Article and Find Full Text PDFThe BRAF kinase and the MAPK pathway are targets of current melanoma therapies. However, MAPK pathway inhibition results in dynamic changes of downstream targets that can counteract inhibitor-action not only in during treatment, but also in acquired resistant tumours. One such dynamic change involves the expression of the transcription factor MITF, a crucial regulator of cell survival and proliferation in untreated as well as drug-addicted acquired resistant melanoma.
View Article and Find Full Text PDFDespite the general focus on an invasive and de-differentiated phenotype as main driver of cancer metastasis, in melanoma patients many metastatic lesions display a high degree of pigmentation, indicative for a differentiated phenotype. Indeed, studies in mice and fish show that melanoma cells switch to a differentiated phenotype at secondary sites, possibly because in melanoma differentiation is closely linked to proliferation through the lineage-specific transcriptional master regulator MITF. Importantly, while a lot of effort has gone into identifying factors that induce the de-differentiated/invasive phenotype, it is not well understood how the switch to the differentiated/proliferative phenotype is controlled.
View Article and Find Full Text PDFThe discovery of activating mutations in the serine/threonine (S/T) kinase BRAF followed by a wave of follow-up research manifested that the MAPK-pathway plays a critical role in melanoma initiation and progression. BRAF and MEK inhibitors produce an unparalleled response rate in melanoma, but it is now clear that most responses are transient, and while some patients show long lasting responses the majority progress within 1 year. In accordance with the key role played by the MAPK-pathway in BRAF mutant melanomas, disease progression is mostly due to the appearance of drug-resistance mechanisms leading to restoration of MAPK-pathway activity.
View Article and Find Full Text PDFPDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN) cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling.
View Article and Find Full Text PDFApproaches to prolong responses to BRAF targeting drugs in melanoma patients are challenged by phenotype heterogeneity. Melanomas of a "MITF-high" phenotype usually respond well to BRAF inhibitor therapy, but these melanomas also contain subpopulations of the resistance "AXL-high" phenotype. > 50% of melanomas progress with enriched "AXL-high" populations, and because AXL is linked to de-differentiation and invasiveness avoiding an "AXL-high relapse" is desirable.
View Article and Find Full Text PDFGenomic diversity among melanoma tumors limits durable control with conventional and targeted therapies. Nevertheless, pathologic activation of the ERK1/2 pathway is a linchpin tumorigenic mechanism associated with the majority of primary and recurrent disease. Therefore, we sought to identify therapeutic targets that are selectively required for tumorigenicity in the presence of pathologic ERK1/2 signaling.
View Article and Find Full Text PDFIt is well know that cancer cells have adopted an altered metabolism and that glucose is a major source of energy for these cells. In melanoma, enhanced glucose usage is favoured through the hyper-activated MAPK pathway, which suppresses OXPHOS and stimulates glycolysis. However, it has not been addressed how glucose availability impacts on melanoma specific signaling pathways that drive melanoma cell proliferation.
View Article and Find Full Text PDFMelanoma is a skin cancer notorious for its metastatic potential. As an initial step of the metastatic cascade, melanoma cells part from the primary tumour and invade the surrounding tissue, which is crucial for their dissemination and the formation of distant secondary tumours. Over the last two decades, our understanding of both, general and melanoma specific mechanisms of invasion has significantly improved, but to date no efficient therapeutic strategy tackling the invasive properties of melanoma cells has reached the clinic.
View Article and Find Full Text PDFTargeting hyperactive MAPK signaling has proven to be an effective treatment for a variety of different cancers. Responses to the BRAF inhibitors vemurafenib and dabrafenib and the MEK inhibitors trametinib and cobimetinib are, however, transient, and complete remission is rarely observed; rather, outgrowth of resistant clones within progressed tumors appears inevitable. These resistant tumors display great heterogeneity, which poses a major challenge to any salvage therapy.
View Article and Find Full Text PDFFront Cell Dev Biol
May 2016
The central role played by the ERK/MAPK pathway downstream of RAS in human neoplasias is best exemplified in the context of melanoma skin cancer. Signaling through the MAPK pathway is crucial for the proliferation of melanocytes, the healthy pigment cells that give rise to melanoma. However, hyper-activation of the MAPK-pathway is found in over 90% of melanomas with approximately 50% of all patients displaying mutations in the kinase BRAF, and approximately 28% of all patients harboring mutations in the MAPK-pathway up-stream regulator NRAS.
View Article and Find Full Text PDFUnderstanding how immune cells such as macrophages interact with cancer cells is of increasing interest, as cancer treatments move towards combining both targeted- and immuno- therapies in new treatment regimes. This protocol is using THP-1 cells, a human leukemia monocytic cell line that can be differentiated into macrophages. This allows studying the effects of the macrophage secretome on cancer cells (on growth, drug response or gene expression) in co-cultures without direct cell contact interactions.
View Article and Find Full Text PDFOnce melanomas have progressed with acquired resistance to mitogen-activated protein kinase (MAPK)-targeted therapy, mutational heterogeneity presents a major challenge. We therefore examined the therapy phase before acquired resistance had developed and discovered the melanoma survival oncogene MITF as a driver of an early non-mutational and reversible drug-tolerance state, which is induced by PAX3-mediated upregulation of MITF. A drug-repositioning screen identified the HIV1-protease inhibitor nelfinavir as potent suppressor of PAX3 and MITF expression.
View Article and Find Full Text PDFTargeted therapy in the treatment of cancer has produced great clinical successes. However, with these came the challenge of acquired resistance. Melanoma, a cancer that carries one of the highest mutational burdens, displays great complexity in mutational acquired resistance with a notable degree of inter-tumoural heterogeneity.
View Article and Find Full Text PDF