The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist , a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system.
View Article and Find Full Text PDFOne enigma in biology is the generation, sensing and maintenance of membrane curvature. Curvature-mediating proteins have been shown to induce specific membrane shapes by direct insertion and nanoscopic scaffolding, while the cytoskeletal motors exert forces indirectly through microtubule and actin networks. It remains unclear, whether the manifold direct motorprotein-lipid interactions themselves constitute another fundamental route to remodel the membrane shape.
View Article and Find Full Text PDFThe organization of actomyosin networks lies at the center of many types of cellular motility, including cell polarization and collective cell migration during development and morphogenesis. Myosin-IXa is critically involved in these processes. Using total internal reflection fluorescence microscopy, we resolved actin bundles assembled by myosin-IXa.
View Article and Find Full Text PDFMany types of cellular motility are based on the myosin family of motor proteins ranging from muscle contraction to exo- and endocytosis, cytokinesis, cell locomotion or signal transduction in hearing. At the center of this wide range of motile processes lies the adaptation of the myosins for each specific mechanical task and the ability to coordinate the timing of motor protein mobilization and targeting. In recent years, great progress has been made in developing single molecule technology to characterize the diverse mechanical properties of the unconventional myosins.
View Article and Find Full Text PDFThe ability to coordinate the timing of motor protein activation lies at the center of a wide range of cellular motile processes including endocytosis, cell division, and cancer cell migration. We show that calcium dramatically alters the conformation and activity of the myosin-VI motor implicated in pivotal steps of these processes. We resolved the change in motor conformation and in structural flexibility using single particle analysis of electron microscopic data and identified interacting domains using fluorescence spectroscopy.
View Article and Find Full Text PDFStriated muscle is an elegant system for study at many levels. Much has been learned about the mechanism of contraction from studying the mechanical properties of intact and permeabilized (or skinned) muscle fibers. Structural studies using electron microscopy, X-ray diffraction or spectroscopic probes attached to various contractile proteins were possible because of the highly ordered sarcomeric arrangement of actin and myosin.
View Article and Find Full Text PDFMyosin XXI is the only myosin expressed in Leishmania parasites. Although it is assumed that it performs a variety of motile functions, the motor's oligomerization states, cargo-binding, and motility are unknown. Here we show that binding of a single calmodulin causes the motor to adopt a monomeric state and to move actin filaments.
View Article and Find Full Text PDFThe envelope of the influenza virus undergoes extensive structural change during the viral life cycle. However, it is unknown how lipid and protein components of the viral envelope contribute to its mechanical properties. Using atomic force microscopy, here we show that the lipid envelope of spherical influenza virions is ∼10 times softer (∼0.
View Article and Find Full Text PDFThe genome of the Leishmania parasite contains two classes of myosin. Myosin-XXI, seemingly the only myosin isoform expressed in the protozoan parasite, has been detected in both the promastigote and amastigote stages of the Leishmania life cycle. It has been suggested to perform a variety of functions, including roles in membrane anchorage, but also long-range directed movements of cargo.
View Article and Find Full Text PDFMethods Mol Biol
November 2011
Optical tweezers offer the capability to directly observe nanometre displacements and apply piconewton forces to single proteins. This method has been applied to the study of many different biological systems. Optical tweezers have proven to be particularly useful in studying the fine details of the mechanisms of molecular motor proteins, and how their movement is coordinated with ATPase activity.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
March 2011
Much has been learned in the past decades about molecular force generation. Single-molecule techniques, such as atomic force microscopy, single-molecule fluorescence microscopy and optical tweezers, have been key in resolving the mechanisms behind the power strokes, 'processive' steps and forces of cytoskeletal motors. However, it remains unclear how single force generators are integrated into composite mechanical machines in cells to generate complex functions such as mitosis, locomotion, intracellular transport or mechanical sensory transduction.
View Article and Find Full Text PDFA novel form of acto-myosin regulation has been proposed in which polymerization of new actin filaments regulates motility of parasites of the apicomplexan class of protozoa. In vivo and in vitro parasite F-actin is very short and unstable, but the structural basis and details of filament dynamics remain unknown. Here, we show that long actin filaments can be obtained by polymerizing unlabeled rabbit skeletal actin (RS-actin) onto both ends of the short rhodamine-phalloidin-stabilized Plasmodium falciparum actin I (Pf-actin) filaments.
View Article and Find Full Text PDFComplex forms of cellular motility, including cell division, organelle trafficking or signal amplification in the auditory system, require strong coordination of the myosin motors involved. The most basic mechanism of coordination is via direct mechanical interactions of individual motor heads leading to modification of their mechanochemical cycles. Here we used an optical trap-based assay to investigate the reversibility of the force-generating conformational change (power stroke) of single myosin-Va motor heads.
View Article and Find Full Text PDFAmrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution.
View Article and Find Full Text PDFTrends Parasitol
January 2009
Apicomplexan parasites are motile and invade host cells. The force required for this is generated by an actomyosin motor. In a recent paper, Baum and colleagues suggest that the protein formin regulates the polymerization of actin at the moving junction between parasite and host cell.
View Article and Find Full Text PDFThe cytoplasm of cells is teaming with vesicles and other cargo that are moving along tracks of microtubules or actin filaments, powered by myosins, kinesins and dyneins. Myosin V has been implicated in several types of intracellular transport. The mechanism by which myosin V moves processively along actin filaments has been the subject of many biophysical and biochemical studies and a consensus is starting to emerge about how this minute molecular motor operates.
View Article and Find Full Text PDFRecent studies provide strong evidence that single myosin class V molecules transport vesicles and organelles processively along F-actin, taking several 36-nm steps, 'hand over hand', for each diffusional encounter. The mechanisms regulating myosin-V's processivity remain unknown. Here, we have used an optical-tweezers-based transducer to measure the effect of load on the mechanical interactions between rabbit skeletal F-actin and a single head of mouse brain myosin-V, which produces its working stroke in two phases.
View Article and Find Full Text PDFA novel form of actomyosin regulation has recently been proposed in which the polymerisation of new actin filaments regulates apicomplexan parasite motility. Here, we identified actin I in the merozoites of Plasmodium falciparum by mass spectrometry. The only post-translational modification is acetylation of the N terminus (acetyl-Gly-Glu-actin), while methylation of histidine 73, a common modification for actin, is absent.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2004
Myosin VI has been localized in membrane ruffles at the leading edge of cells, at the trans-Golgi network compartment of the Golgi complex and in clathrin-coated pits or vesicles, indicating that it functions in a wide variety of intracellular processes. Myosin VI moves along actin filaments towards their minus end, which is the opposite direction to all of the other myosins so far studied (to our knowledge), and is therefore thought to have unique properties and functions. To investigate the cellular roles of myosin VI, we identified various myosin VI binding partners and are currently characterizing their interactions within the cell.
View Article and Find Full Text PDFMyosin VI is involved in a wide variety of intracellular processes such as endocytosis, secretion and cell migration. Unlike almost all other myosins so far studied, it moves towards the minus end of actin filaments and is therefore likely to have unique cellular properties. However, its mechanism of force production and movement is not understood.
View Article and Find Full Text PDFMuscle contraction is driven by the cyclical interaction of myosin with actin, coupled with ATP hydrolysis. Myosin attaches to actin, forming a crossbridge that produces force and movement as it tilts or rocks into subsequent bound states before finally detaching. It has been hypothesized that the kinetics of one or more of these mechanical transitions are dependent on load, allowing muscle to shorten quickly under low load, but to sustain tension economically, with slowly cycling crossbridges under high load conditions.
View Article and Find Full Text PDF