Publications by authors named "Claudia V de Moura Gallo"

Background: Worldwide, breast cancer is the main cause of cancer mortality in women. Most cases originate in mammary ductal cells that produce the nipple aspirate fluid (NAF). In cancer patients, this secretome contains proteins associated with the tumor microenvironment.

View Article and Find Full Text PDF

Unlabelled: NAF is a breast fluid that is closely related to the tumor microenvironment and a valuable sample for studying breast cancer. To perform an in-depth proteomic analysis of this sample, aliquots of a single NAF digest were analyzed by the following peptide-centric fractionation strategies: a) 30-cm reversed-phase (RP) column on-line with an LTQ-Orbitrap XL; b) off-line strong cation-exchange (SCX) column; and c) pI-based OFFGEL fractionation. All fractions from approaches (b) and (c) were further analyzed on a 10-cm RP column hyphenated to the same mass spectrometer.

View Article and Find Full Text PDF

In the present paper we aimed to characterize epigenetic aspects and analyze TP53 transcription in the 21 T series, composed of breast cell lines: non-cancerous H16N2; Atypical Ductal Hyperplasia 21PT; Ductal Carcinoma in situ 21NT and Invasive Metastatic Carcinoma 21MT1. We detected a global genomic hypomethylation in 21NT and 21MT1. The histone modification markers analysis showed an important global decrease of the active chromatin mark H4Ac in 21MT1 relative to the other cell lines while the repressive mark H3K9Me3 were not significantly altered.

View Article and Find Full Text PDF

p53 is a master regulatory protein that participates in cellular processes such as apoptosis, DNA repair, and cell cycle control. p53 functions as a homotetrameric tumor suppressor, and is lost in more than 50% of human cancers. Recent studies have suggested that the formation of mutant p53 aggregates is associated with loss-of-function (LoF), dominant-negative (DN), and gain-of-function (GoF) effects.

View Article and Find Full Text PDF

Background: MicroRNAs are non-coding RNAs involved in the regulation of gene expression including DNA damage responses. Low doses of low energy X-ray radiation, similar to those used in mammographic exams, has been described to be genotoxic. In the present work we investigated the expression of miR-34a; a well described p53-regulated miRNA implicated in cell responses to X-ray irradiation at low doses.

View Article and Find Full Text PDF

p53 is a key protein that participates in cell-cycle control, and its malfunction can lead to cancer. This tumour suppressor protein has three main domains; the N-terminal transactivation domain, the CTD (C-terminal domain) and the core domain (p53C) that constitutes the sequence-specific DBD (DNA-binding region). Most p53 mutations related to cancer development are found in the DBD.

View Article and Find Full Text PDF

Over 50% of all human cancers lose p53 function. To evaluate the role of aggregation in cancer, we asked whether wild-type (WT) p53 and the hot-spot mutant R248Q could aggregate as amyloids under physiological conditions and whether the mutant could seed aggregation of the wild-type form. The central domains (p53C) of both constructs aggregated into a mixture of oligomers and fibrils.

View Article and Find Full Text PDF

P53 is a tumor suppressor protein critical for genome integrity. Although its control at the protein level is well known, the transcriptional regulation of the TP53 gene is still unclear. We have analyzed the organization of the TP53 gene domain using DNA arrays in several breast cancer and control cell lines.

View Article and Find Full Text PDF

P53 is one of the most important tumor suppressor proteins in human cancers. Mutations in the TP53 gene are common features of malignant tumors and normally correlate to a more aggressive disease. In breast cancer, these gene alterations are present in approximately 20% of cases and are characteristically of missense type.

View Article and Find Full Text PDF

The tumor suppressor protein p53 is a nuclear protein that serves as an important transcription factor. The region responsible for sequence-specific DNA interaction is located in its core domain (p53C). Although full-length p53 binds to DNA as a tetramer, p53C binds as a monomer since it lacks the oligomerization domain.

View Article and Find Full Text PDF

The X-ray repair cross-complementing Group1 (XRCC1) gene has been defined as essential in the base excision repair (BER) and single-strand break repair processes. This gene is highly polymorphic, and the most extensively studied genetic changes are in exon 6 (Arg194Trp) and in exon 10 (Arg399Gln). These changes, in conserved protein sites, may alter the base excision repair capacity, increasing the susceptibility to adverse health conditions, including cancer.

View Article and Find Full Text PDF

TP53 mutations are common in esophageal squamous cell carcinomas (SCC). To identify biological markers of possible relevance in esophageal SCC, we (i) searched for genes expressed in a p53-dependent manner in TE-1, an esophageal SCC cell line expressing the temperature-sensitive TP53 mutant V272M, and (ii) investigated the expression of one of those genes, the interferon-inducible Guanylate Binding Protein 2 (GBP-2), in esophageal SCC tissues. Clontech Human Cancer 1.

View Article and Find Full Text PDF

Overexpression of Cyclooxygenase-2 (COX-2) is observed in most tumor types. Increased COX-2 activity and synthesis of prostaglandins stimulates proliferation, angiogenesis, invasiveness and inhibits apoptosis. Many stress and proinflammatory signals induce COX-2 expression, including oxyradicals or DNA-damaging agents.

View Article and Find Full Text PDF

A prolonged or increased exposure to endogenous estrogens associated with genetic factors are considered to be the main risk factors for breast cancer. The CYP19 gene encodes the enzyme aromatase, which catalyzes the conversion of androgens into estrogens. CYP19 alleles containing different numbers of tetranucleotide TTTA repeats in intron 4 have been associated with increased breast cancer risk.

View Article and Find Full Text PDF

Due to particular social and economical development, and to the impact of globalization of lifestyles, Latin America shows a superposition of cancers that are frequent in low resource countries (gastric, oesophageal squamous cell and cervical cancers) and high resource countries (cancers of breast, colon and rectum, lung and prostate). Latin America thus offers opportunities for investigating the impact on changing lifestyle patterns on the occurrence of cancer. At the molecular level, mutations in the tumor suppressor gene TP53 are common in many cancers and their distribution can be informative of the nature of the mutagenic mechanisms, thus giving clues to cancer etiology and molecular pathogenesis.

View Article and Find Full Text PDF

Esophageal cancer represents one of the most common and lethal cancers around the World. Some areas of South America, including parts of Brazil, present the highest incidence of the disease in the West. The main etiological factors that have been associated with the disease in Brazil are alcohol consumption, tobacco smoking and, in the South, consumption of hot maté.

View Article and Find Full Text PDF

Somatic mutations in the TP53 gene are the most frequently observed genetic alterations in human malignancies, including breast cancer, which is one of the leading causes of death among women in Brazil. In our study, we determined the frequency and the pattern of TP53 mutations in malignant breast tumors from 120 patients living in Rio de Janeiro, Brazil. TP53 mutations were found in 20% of the tumors, which contained a diversity of mutation types: missense (62.

View Article and Find Full Text PDF