Sodium-ion batteries have recently aroused the interest of industries as possible replacements for lithium-ion batteries in some areas. With their high theoretical capacities and competitive prices, P2-type layered oxides (NaTMO) are among the obvious choices in terms of cathode materials. On the other hand, many of these materials are unstable in air due to their reactivity toward water and carbon dioxide.
View Article and Find Full Text PDFHigh-entropy oxides (HEOs) have emerged as promising anode materials for next-generation lithium-ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen-deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs.
View Article and Find Full Text PDFHigh-entropy oxide nanofibers, based on equimolar (Cr,Mn,Fe,Co,Ni), (Cr,Mn,Fe,Co,Zn) and (Cr,Mn,Fe,Ni,Zn) combinations, were prepared by electrospinning followed by calcination. The obtained hollow nanofibers exhibited a porous structure consisting of interconnected nearly strain-free (CrMnFeCoNi)O, (CrMnFeCoZn)O and (CrMnFeNiZn)O single crystals with a pure 3̄ spinel structure. Oxidation state of the cations at the nanofiber surface was assessed by X-ray photoelectron spectroscopy and cation distributions were proposed satisfying electroneutrality and optimizing octahedral stabilization.
View Article and Find Full Text PDFOver the past decade, interest about metal halide perovskites has rapidly increased, as they can find wide application in optoelectronic devices. Nevertheless, although thermal evaporation is crucial for the development and engineering of such devices based on multilayer structures, the optical properties of thermally deposited perovskite layers (spontaneous and amplified spontaneous emission) have been poorly investigated. This paper is a study from a nano- to micro- and macro-scale about the role of light-emitting species (namely free carriers and excitons) and trap states in the spontaneous emission of thermally evaporated thin layers of CHNHPbBr perovskite after wet air UV light trap passivation.
View Article and Find Full Text PDFWe report on the facile synthesis of SiO @nitrized-TiO nanocomposite (NST) by calcination of TiO xerogel with OctaAmmonium POSS® (N-POSS; POSS=polyhedral oligomeric silsesquioxanes). The as-obtained nanoporous mixed oxide is constituted by uniformly distributed SiO and nitrized-TiO , where the silica component is present in an amorphous state and TiO in an anatase/rutile mixed phase (92.1 % vs.
View Article and Find Full Text PDFPresently, adsorption/absorption is one of the most efficient and cost-effective methods to clean oil spill up. In this work, self-supporting paper-like fibrous membranes were prepared via electrospinning and carbonisation at different temperatures (500, 650 or 800 °C) by using polyacrylonitrile/polymethylmethacrylate blends with a different mass ratio of the two polymers (1:0, 6:1 or 2:1). After morphological and microstructural characterisation, the as-produced membranes were evaluated as sorbents by immersion in vegetable (sunflower seed or olive) and mineral (motor) oil or in 1:4 (:) oil/water mixture.
View Article and Find Full Text PDFDue to their outstanding physicochemical properties, the next generation of the graphene family-graphene quantum dots (GQDs)-are at the cutting edge of nanotechnology development. GQDs generally possess many hydrophilic functionalities which allow their dispersibility in water but, on the other hand, could interfere with reactions that are mainly performed in organic solvents, as for cycloaddition reactions. We investigated the 1,3-dipolar cycloaddition (1,3-DCA) reactions of the C-ethoxycarbonyl -methyl nitrone and the newly synthesized -diethoxyphosphorylpropilidene -benzyl nitrone with the surface of GQDs, affording the isoxazolidine cycloadducts -GQDs and -GQDs .
View Article and Find Full Text PDFThe effect of the type of dopant (titanium and manganese) and of the reduced graphene oxide content (rGO, 30 or 50 wt %) of the α-FeO@rGO nanocomposites on their microstructural properties and electrochemical performance was investigated. Nanostructured composites were synthesized by a simple one-step solvothermal method and evaluated as anode materials for sodium ion batteries. The doping does not influence the crystalline phase and morphology of the iron oxide nanoparticles, but remarkably increases stability and Coulombic efficiency with respect to the anode based on the composite α-FeO@rGO.
View Article and Find Full Text PDFIn the last years, hematite has been utilized in a plethora of applications. High aspect-ratio nanohematite and hematite/silica core-shell nanostructures are arousing growing interest for applications exploiting their magnetic properties. Atomic layer deposition (ALD) is utilized here to produce SiO-coated α-FeO nanofibers (NFs) through two synthetic routes, viz.
View Article and Find Full Text PDFNowadays, active targeting of nanotherapeutics is a challenging issue. Here, we propose a rational design of a ternary nanoassembly (SAP) composed of nonionic amphiphilic β-cyclodextrins (amphiphilic CD) incorporating pheophorbide (Pheo) as a phototherapeutic and an adamantanyl-folic acid conjugate (Ada-FA) to target tumor cells overexpressing α-folate receptor (FR-α(+)). Dynamic light scattering and ζ-potential pointed out the presence of nanoassemblies bearing a negative surface charge (ζ = -51 mV).
View Article and Find Full Text PDFWe present scanning near-field images of surface plasmon modes around a single elliptical nanohole in 88 nm thick Au film. We find that rotating surface plasmon vortex modes carrying extrinsic orbital angular momentum can be induced under linearly polarized illumination. The vortex modes are obtained only when the incident polarization direction differs from one of the ellipse axes.
View Article and Find Full Text PDFGraphene quantum dots (GQD), the new generation members of graphene-family, have shown promising applications in anticancer therapy. In this study, we report the synthesis of a fluorescent and biocompatible nanovector, based on GQD, for the targeted delivery of an anticancer drug with benzofuran structure (BFG) and bearing the targeting ligand riboflavin (RF, vitamin B2). The highly water-dispersible nanoparticles, synthesized from multi-walled carbon nanotubes (MWCNT) by prolonged acidic treatment, were linked covalently to the drug by means of a cleavable PEG linker while the targeting ligand RF was conjugated to the GQD by π⁻π interaction using a pyrene linker.
View Article and Find Full Text PDF