Publications by authors named "Claudia Steinbrink"

Temporal and spectral auditory processing abilities are required for efficient and unimpaired processing of speech and might thus be associated with the development of phonological and literacy skills in children. Indeed, studies with unselected children have found links between these basic auditory processing abilities and the development of phonological awareness, reading, and spelling. Additionally, associations between the processing of temporal or spectral/tonal information in music and phonological awareness/literacy have been reported, but findings concerning relations between music processing and spelling are rather sparse.

View Article and Find Full Text PDF

Purpose: It is unknown whether phonological deficits are the primary cause of developmental dyslexia or whether they represent a secondary symptom resulting from impairments in processing basic acoustic parameters of speech. This might be due, in part, to methodological difficulties. Our aim was to overcome two of these difficulties: the comparability of stimulus material and task in speech versus nonspeech conditions.

View Article and Find Full Text PDF

It is still unclear whether phonological processing deficits are the underlying cause of developmental dyslexia, or rather a consequence of basic auditory processing impairments. To avoid methodological confounds, in the current study the same task and stimuli of comparable complexity were used to investigate both phonological and basic auditory (temporal and spectral) processing in dyslexia. German dyslexic children (Grades 3 and 4) were compared to age- and grade-matched controls in a vowel length discrimination task with three experimental conditions: In a phonological condition, natural vowels were used, differing both with respect to temporal and spectral information (in German, vowel length is phonemic, and vowel length differences are characterized by both temporal and spectral information).

View Article and Find Full Text PDF

We compared processing of speech and non-speech by means of the mismatch negativity (MMN). For this purpose, the MMN elicited by vowels was compared to those elicited by two non-speech stimulus types: spectrally rotated vowels, having the same stimulus complexity as the speech stimuli, and sounds based on the bands of formants of the vowels, representing non-speech stimuli of lower complexity as compared to the other stimulus types. This design allows controlling for effects of stimulus complexity when comparing neural correlates of processing speech to non-speech.

View Article and Find Full Text PDF

In a longitudinal study, auditory and visual temporal order thresholds (TOTs) were investigated in primary school children (N = 236; mean age at first data point = 6;7) at the beginning of Grade 1 and the end of Grade 2 to test whether rapid temporal processing abilities predict reading and spelling at the end of Grades 1 and 2. Auditory and visual TOTs differed but showed comparable developmental trajectories over 20 months. Visual TOTs were not predictive of literacy measures; auditory TOTs in Grade 1 were the best predictor.

View Article and Find Full Text PDF

This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in two experimental conditions.

View Article and Find Full Text PDF

The article was motivated by a commentary of Spinelli et al. (2010) , who commented on our experimental study with dyslexic children (Lachmann & van Leeuwen, 2008). They questioned the unusually large reversed lexicality effect we reported for three of our dyslexic children for which word reading times were considerably longer than nonword reading times.

View Article and Find Full Text PDF

Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional neuroanatomy underlying cognitive dysfunction in dyslexia.

View Article and Find Full Text PDF

Developmental dyslexia has been assumed to arise from general auditory deficits, compromising rapid temporal integration both of linguistic and nonlinguistic acoustic stimuli. Because the effort of auditory temporal processing of speech and nonspeech test materials may depend on presentation rate, fMRI measurements were performed in dyslexics and controls during passive listening to series of syllable and click sounds, using a parametric approach. Controls showed a decrease of hemodynamic brain activation within the right and an increase within the left anterior insula as a function of the presentation rate both of click as well as syllable trains.

View Article and Find Full Text PDF

Deficits in verbal short-term memory have been identified as one factor underlying reading and spelling disorders. However, the nature of this deficit is still unclear. It has been proposed that poor readers make less use of phonological coding, especially if the task can be solved through visual strategies.

View Article and Find Full Text PDF

Behavioral studies indicate deficits in phonological working memory (WM) and executive functioning in dyslexics. However, little is known about the underlying functional neuroanatomy. In the present study, neural correlates of WM in adolescents and young adults with dyslexia were investigated using event-related functional magnetic resonance imaging (fMRI) and a parametric verbal WM task which required the manipulation of verbal material.

View Article and Find Full Text PDF

Recent functional MRI (fMRI) studies have revealed an increased task-related activation in older subjects during a variety of cognitive or perceptual tasks, which may signal beneficial compensatory activity to counteract structural and neurochemical changes associated with aging. Under the assumption that incremental movement rates are associated with an increased functional demand on the motor system, we used fMRI and acoustically paced movements of the right index finger at six different frequencies (2.0, 2.

View Article and Find Full Text PDF