Publications by authors named "Claudia S Wagner"

We have investigated the effect of different maturation stimuli on the ability of mature dendritic cells (DCs) to cross-present newly acquired particulate antigens. Cross-presentation was impaired in DCs matured by treatment with TNF-α, CpG and LPS, but was less affected upon CD40L-induced maturation. The difference could not be explained by decreased antigen uptake or translocation into the cytosol, but decreased cross-presentation ability did correlate with increased phagosomal/lysosomal acidification.

View Article and Find Full Text PDF

Cross-presentation plays a fundamental role in the induction of CD8-T cell immunity. However, although more than three decades have passed since its discovery, surprisingly little is known about the exact mechanisms involved. Here we give an overview of the components involved at different stages of this process.

View Article and Find Full Text PDF

We consider a theoretical model for a binary mixture of colloidal particles and spherical emulsion droplets. The hard sphere colloids interact via additional short-ranged attraction and long-ranged repulsion. The droplet-colloid interaction is an attractive well at the droplet surface, which induces the Pickering effect.

View Article and Find Full Text PDF

The effect of dendritic cell (DC) maturation on MHC class II-restricted Ag presentation is well studied, but less is known about the effects of DC maturation on MHC class I-restricted cross-presentation. We investigated the ability of mature DCs to present Ags from cells infected with HSV-1. Pretreatment with pure LPS increased cross-presentation in a manner dependent on both MyD88 and Toll/IL-1R domain-containing adaptor inducing IFN-β, whereas a similar dose of a less pure LPS preparation inhibited cross-presentation.

View Article and Find Full Text PDF

The fabrication of heteroaggregates comprising inorganic and organic nanoparticles of different sizes is reported. Control over the assembly of nanoscale functional building units is of great significance to many practical applications. Joining together different spherical nanoparticles in a defined manner allows control over the shape of the composites.

View Article and Find Full Text PDF

We report on the translation and rotation of particle clusters made through the combination of spherical building blocks. These clusters present ideal model systems to study the motion of objects with complex shape. Since they could be separated into fractions of well-defined configurations on a sufficient scale and because their overall dimensions were below 300 nm, the translational and rotational diffusion coefficients of particle doublets, triplets, and tetrahedrons could be determined by a combination of polarized dynamic light scattering (DLS) and depolarized dynamic light scattering (DDLS).

View Article and Find Full Text PDF

The fabrication of small assemblies of spherical colloidal particles is presented. Basic principles of the preparation of miniemulsions were combined with the concept originally described by Pine and co-workers for the preparation of clusters from microspheres. The application of ultrasonic emulsification limits the size distribution of the emulsion droplets and thus the statistical distribution of the number of particles per droplet.

View Article and Find Full Text PDF

Human cytomegalovirus infects human populations at a high frequency worldwide. During the long coevolution of virus and host, a fine balance has developed between viral immune evasion strategies and defense mechanisms of the immune system. Human cytomegalovirus encodes multiple proteins involved in the evasion of immune recognition, among them UL18, a MHC class I homologue.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) encodes the MHC class I-like molecule UL18, which binds with high affinity to the leukocyte Ig-like receptor-1 (LIR-1), an inhibitory receptor commonly expressed on myeloid cells and subsets of NK and T cells. The exact role of UL18 is not known, in particular in relation to its proposed role in HCMV immune escape. Given the ubiquitous expression of LIR-1 on dendritic cells (DCs), we hypothesized that UL18 may affect DC function.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) encodes UL18, a major histocompatibility complex (MHC) class I homologue that binds to the leukocyte immunoglobulin-like receptor (LIR)-1 (also called ILT2/CD85j/LILRB1), an inhibitory receptor expressed on myeloid and lymphoid immune cells. The molecular basis underlying the high affinity binding of UL18 to LIR-1, compared to MHC class I molecules (MHC-I), is unclear. Based on a comparative structural analysis of a molecular model of UL18 with the crystal structure of the HLA-A2/LIR-1 complex, we identified three regions in UL18 influencing interaction with LIR-1.

View Article and Find Full Text PDF

Overexpression of membrane proteins is often essential for structural and functional studies, but yields are frequently too low. An understanding of the physiological response to overexpression is needed to improve such yields. Therefore, we analyzed the consequences of overexpression of three different membrane proteins (YidC, YedZ, and LepI) fused to green fluorescent protein (GFP) in the bacterium Escherichia coli and compared this with overexpression of a soluble protein, GST-GFP.

View Article and Find Full Text PDF

NK and T cells are important for combating CMV infection. Some NK and T cells express leukocyte Ig-like receptor-1 (LIR-1), an inhibitory receptor recognizing MHC class I and the CMV-encoded homolog UL18. We previously demonstrated an early increase in LIR-1-expressing blood lymphocytes in lung-transplanted patients later developing CMV disease.

View Article and Find Full Text PDF