Publications by authors named "Claudia S Robertson"

Background: Contemporary surgical practices for traumatic brain injury (TBI) remain unclear. We describe the clinical profile of an 18-centre US TBI cohort with cranial surgery.

Methods: The prospective, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study (2014-2018; ClinicalTrials.

View Article and Find Full Text PDF
Article Synopsis
  • The study looked at how doctors sedate patients with serious brain injuries to help reduce pressure in the brain, known as intracranial pressure (ICP).
  • Researchers analyzed data from a group of patients who were in the ICU for at least five days and had their sedation levels tracked daily.
  • They found that the highest sedation levels were given on the first day in the ICU, but the way sedation was managed varied a lot between different hospitals.
View Article and Find Full Text PDF

Objectives: An estimated 14-23% of patients with traumatic brain injury (TBI) incur multiple lifetime TBIs. The relationship between prior TBI and outcomes in patients with moderate to severe TBI (msTBI) is not well delineated. We examined the associations between prior TBI, in-hospital mortality, and outcomes up to 12 months after injury in a prospective US msTBI cohort.

View Article and Find Full Text PDF

Neurofilament-light chain (NF-L) and phosphorylated neurofilament-heavy chain (pNF-H) are axonal proteins that have been reported as potential diagnostic and prognostic biomarkers in traumatic brain injury (TBI). However, detailed temporal profiles for these proteins in blood, and interrelationships in the acute and chronic time periods post-TBI have not been established. Our objectives were: 1) to characterize acute-to-chronic serum NF-L and pNF-H profiles after moderate-severe TBI, as well as acute cerebrospinal fluid (CSF) levels; 2) to evaluate CSF and serum NF-L and pNF-H associations with each other; and 3) to assess biomarker associations with global patient outcome using both the Glasgow Outcome Scale-Extended (GOS-E) and Disability Rating Scale (DRS).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is defined as an injury to the brain by external forces which can lead to cellular damage and the disruption of normal central nervous system functions. The recently approved blood-based biomarkers GFAP and UCH-L1 can only detect injuries which are detectable on CT, and are not sensitive enough to diagnose milder injuries or concussion. Exosomes are small microvesicles which are released from the cell as a part of extracellular communication in normal as well as diseased states.

View Article and Find Full Text PDF

Isolated traumatic subarachnoid hemorrhage (tSAH) after traumatic brain injury (TBI) on head computed tomography (CT) scan is often regarded as a "mild" injury, with reduced need for additional workup. However, tSAH is also a predictor of incomplete recovery and unfavorable outcome. This study aimed to evaluate the characteristics of CT-occult intracranial injuries on brain magnetic resonance imaging (MRI) scan in TBI patients with emergency department (ED) arrival Glasgow Coma Scale (GCS) score 13-15 and isolated tSAH on CT.

View Article and Find Full Text PDF

Importance: Traumatic brain injury (TBI) is associated with persistent functional and cognitive deficits, which may be susceptible to secondary insults. The implications of exposure to surgery and anesthesia after TBI warrant investigation, given that surgery has been associated with neurocognitive disorders.

Objective: To examine whether exposure to extracranial (EC) surgery and anesthesia is related to worse functional and cognitive outcomes after TBI.

View Article and Find Full Text PDF

Importance: One traumatic brain injury (TBI) increases the risk of subsequent TBIs. Research on longitudinal outcomes of civilian repetitive TBIs is limited.

Objective: To investigate associations between sustaining 1 or more TBIs (ie, postindex TBIs) after study enrollment (ie, index TBIs) and multidimensional outcomes at 1 year and 3 to 7 years.

View Article and Find Full Text PDF

In patients with traumatic brain injury (TBI), serum biomarkers may have utility in assessing the evolution of secondary brain injury. A panel of nine brain-injury- associated biomarkers was measured in archived serum samples over 10 days post-injury from 100 patients with moderate-severe TBI. Among the biomarkers evaluated, serum glial fibrillary acidic protein (GFAP) had the strongest associations with summary measures of acute pathophysiology, including intracranial pressure (ICP), cerebral perfusion pressure (CPP), and brain tissue pO (PbtO).

View Article and Find Full Text PDF

Carbon-based superoxide dismutase (SOD) mimetic nanozymes have recently been employed as promising antioxidant nanotherapeutics due to their distinct properties. The structural features responsible for the efficacy of these nanomaterials as antioxidants are, however, poorly understood. Here, the process-structure-property-performance properties of coconut-derived oxidized activated charcoal (cOAC) nano-SOD mimetics are studied by analyzing how modifications to the nanomaterial's synthesis impact the size, as well as the elemental and electrochemical properties of the particles.

View Article and Find Full Text PDF

Many patients with mild traumatic brain injury (mTBI) are at risk for mental health problems such as posttraumatic stress disorder (PTSD). The objective of this study was to determine whether the polygenic risk for PTSD (or for related mental health disorders or traits including major depressive disorder [MDD] and neuroticism [NEU]) was associated with an increased likelihood of PTSD in the aftermath of mTBI. We used data from individuals of European ancestry with mTBI enrolled in TRACK-TBI (n = 714), a prospective longitudinal study of level 1 trauma center patients.

View Article and Find Full Text PDF

Background: Adult patients with mild traumatic brain injury (mTBI) exhibit distinct phenotypes of emotional and cognitive functioning identified by latent profile analysis of clinical neuropsychological assessments. When discerned early after injury, these latent clinical profiles have been found to improve prediction of long-term outcomes from mTBI. The present study hypothesized that white matter (WM) microstructure is better preserved in an emotionally resilient mTBI phenotype compared with a neuropsychiatrically distressed mTBI phenotype.

View Article and Find Full Text PDF

Glial fibrillary acidic protein (GFAP) is the major intermediate filament III protein of astroglia cells which is upregulated in traumatic brain injury (TBI). Here we reported that GFAP is truncated at both the C- and N-terminals by cytosolic protease calpain to GFAP breakdown products (GBDP) of 46-40K then 38K following pro-necrotic (A23187) and pro-apoptotic (staurosporine) challenges to primary cultured astroglia or neuron-glia mixed cells. In addition, with another pro-apoptotic challenge (EDTA) where caspases are activated but not calpain, GFAP was fragmented internally, generating a C-terminal GBDP of 20 kDa.

View Article and Find Full Text PDF

Several proteins have proven useful as blood-based biomarkers to assist in evaluation and management of traumatic brain injury (TBI). The objective of this study was to determine whether two day-of-injury blood-based biomarkers are predictive of posttraumatic stress disorder (PTSD). We used data from 1143 individuals with mild TBI (mTBI; defined as admission Glasgow Coma Scale [GCS] score 13-15) enrolled in TRACK-TBI, a prospective longitudinal study of level 1 trauma center patients.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) literature on single-center studies contains conflicting results regarding acute effects of mild traumatic brain injury (mTBI) on white matter (WM) microstructure and the prognostic significance. This larger-scale multi-center DTI study aimed to determine how acute mTBI affects WM microstructure over time and how early WM changes affect long-term outcome. From Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI), a cohort study at 11 United States level 1 trauma centers, a total of 391 patients with acute mTBI ages 17 to 60 years were included and studied at two weeks and six months post-injury.

View Article and Find Full Text PDF
Article Synopsis
  • Severe traumatic brain injury (TBI) is a serious problem that can lead to long-term disabilities or death, making it hard to predict outcomes for patients.
  • Researchers used a model called the IMPACT Lab to see if it could help predict how people would do 7-10 years after a TBI, and also looked at certain fluids in the body that might help with this prediction.
  • The study found the IMPACT Lab model was pretty good at predicting outcomes, and higher risk scores meant worse long-term health and thinking abilities for those who survived.
View Article and Find Full Text PDF

Background: In 2016, the National Academies of Science, Engineering and Medicine called for the development of a National Trauma Research Action Plan. The Department of Defense funded the Coalition for National Trauma Research to generate a comprehensive research agenda spanning the continuum of trauma and burn care. Given the public health burden of injuries to the central nervous system, neurotrauma was one of 11 panels formed to address this recommendation with a gap analysis and generation of high-priority research questions.

View Article and Find Full Text PDF

Importance: Posttraumatic epilepsy (PTE) is a recognized sequela of traumatic brain injury (TBI), but the long-term outcomes associated with PTE independent of injury severity are not precisely known.

Objective: To determine the incidence, risk factors, and association with functional outcomes and self-reported somatic, cognitive, and psychological concerns of self-reported PTE in a large, prospectively collected TBI cohort.

Design, Setting, And Participants: This multicenter, prospective cohort study was conducted as part of the Transforming Research and Clinical Knowledge in Traumatic Brain Injury study and identified patients presenting with TBI to 1 of 18 participating level 1 US trauma centers from February 2014 to July 2018.

View Article and Find Full Text PDF

Importance: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood.

View Article and Find Full Text PDF

Background: Brain volumes in regions such as the hippocampus and amygdala have been associated with risk for the development of posttraumatic stress disorder (PTSD). The objective of this study was to determine whether a set of regional brain volumes, measured by magnetic resonance imaging at 2 weeks following mild traumatic brain injury, were predictive of PTSD at 3 and 6 months after injury.

Methods: Using data from TRACK-TBI (Transforming Research and Clinical Knowledge in TBI), we included patients (N = 421) with Glasgow Coma Scale scores 13-15 assessed after evaluation in the emergency department and at 2 weeks, 3 months, and 6 months after injury.

View Article and Find Full Text PDF

Background: An early acute marker of long-term neurological outcome would be useful to help guide clinical decision making and therapeutic effectiveness after severe traumatic brain injury (TBI). We investigated the utility of the Disability Rating Scale (DRS) as early as 1 wk after TBI as a predictor of favorable 6-mo Glasgow Outcome Scale extended (GOS-E).

Objective: To determine the predictability of a favorable 6-mo GOS-E using the DRS measured during weeks 1 to 4 of injury.

View Article and Find Full Text PDF

Systemic inflammation impacts outcome after traumatic brain injury (TBI), but most TBI biomarker studies have focused on brain-specific proteins. C-reactive protein (CRP) is a widely used biomarker of inflammation with potential as a prognostic biomarker after TBI. The ransforming esearch and linical nowledge in raumatic rain njury (TRACK-TBI) study prospectively enrolled TBI patients within 24 h of injury, as well as orthopedic injury and uninjured controls; biospecimens were collected at enrollment.

View Article and Find Full Text PDF

Despite pre-clinical evidence for the role of inflammation in traumatic brain injury (TBI), there is limited data on inflammatory biomarkers in mild TBI (mTBI). In this study, we describe the profile of plasma inflammatory cytokines and explore associations between these cytokines and neuropsychological outcomes after mTBI. Patients with mTBI with negative computed tomography and orthopedic injury (OI) controls without mTBI were prospectively recruited from emergency rooms at three trauma centers.

View Article and Find Full Text PDF