Publications by authors named "Claudia Reinlein"

This paper describes an opto-mechanical concept of a deformable metal mirror membrane, which can shift the focus position over a large range by use of a single actuator. The core element of the mirror is a diamond turned tulip-shaped membrane, the design is optimized to correct astigmatic aberrations which arise from the use of a curved mirror under a deflection angle. For this purpose, the target mirror surface is biconic.

View Article and Find Full Text PDF

Adaptive optical pre-compensation is seen as crucial for free-space laser communication in order to overcome the influence of atmospheric turbulence, particularly with respect to Earth-to-GEO feederlinks. This paper presents an experimental investigation into adaptive optical pre-compensation under large point-ahead-angles. We detail the design and realization of a free-space laser communication experiment over a 1.

View Article and Find Full Text PDF

It is envisaged that future large space telescopes will be lightweight and employ active optics to maintain optical quality throughout the mission lifetime. We have proposed a 4 m, two-mirror space telescope with an active optics system based on reimaging the telescope primary mirror onto a small active mirror (110 mm optical pupil). Using Zemax, we demonstrate the feasibility of using this mirror to correct low-order Zernike aberrations and show that the aberration is well corrected across the 2.

View Article and Find Full Text PDF

The period of fiber Bragg gratings is adapted by shaping the wavefronts of ultrashort laser pulses applied in a phase mask inscription technique. A specially designed deformable mirror, based on a dielectric substrate to withstand high peak powers, is utilized to deform the wavefront. A shift of about 11 nm is demonstrated for a Bragg wavelength around 1550 nm.

View Article and Find Full Text PDF

It is anticipated that ground-to-geostationary orbit (GEO) laser communication will benefit from pre-compensation of atmospheric turbulence for laser beam propagation through the atmosphere. Theoretical simulations and laboratory experiments have determined its feasibility; extensive free-space experimental validation has, however, yet to be fulfilled. Therefore, we designed and implemented an adaptive optical (AO)-box which pre-compensates an outgoing laser beam (uplink) using the measurements of an incoming beam (downlink).

View Article and Find Full Text PDF

We present a temporally-stable active mount to compensate for manufacturing-induced deformations of reflective optical components. In this paper, we introduce the design of the active mount, and its evaluation results for two sample mirrors: a quarter mirror of 115 × 105 × 9 mm, and a full mirror of 228 × 210 × 9 mm. The quarter mirror with 20 actuators shows a best wavefront error rms of 10 nm.

View Article and Find Full Text PDF

We explore adaptive optics (AO) pre-compensation for optical communication between Earth and geostationary (GEO) satellites in a laboratory experiment. Thus, we built a rapid control prototyping breadboard with an adjustable point-ahead angle where downlink and uplink can operate both at 1064 nm and 1550 nm wavelength. With our real-time system, beam wander resulting from artificial turbulence was reduced such that the beam hits the satellite at least 66% of the time as compared to merely 3% without correction.

View Article and Find Full Text PDF

A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors.

View Article and Find Full Text PDF

The thermal-piezoelectric deformable mirror (TPDM) is a device employed to compensate for laser-induced mirror deformation and thermal lensing in high-power optical systems. The TPDM setup is a unimorph deformable mirror with thermal and piezoelectric actuation properties. Laser-induced thermal lensing is compensated for by heating of the TPDM.

View Article and Find Full Text PDF