Publications by authors named "Claudia Puri"

Autophagosomes are double-membraned vesicles that engulf cytoplasmic contents, which are ultimately degraded after autophagosome-lysosome fusion. The prevailing view, largely inferred from EM-based studies, was that mammalian autophagosomes evolved from disc-shaped precursors that invaginated and then were closed at the single opening. Many site(s) of origin of these precursors have been proposed.

View Article and Find Full Text PDF

The sequence of morphological intermediates that leads to mammalian autophagosome formation and closure is a crucial yet poorly understood issue. Previous studies have shown that yeast autophagosomes evolve from cup-shaped phagophores with only one closure point, and mammalian studies have inferred that mammalian phagophores also have single openings. Our superresolution microscopy studies in different human cell lines in conditions of basal and nutrient-deprivation-induced autophagy identified autophagosome precursors with multifocal origins that evolved into unexpected finger-like phagophores with multiple openings before becoming more spherical structures.

View Article and Find Full Text PDF

The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes for degradation and includes macroautophagy, chaperone-mediated autophagy, and microautophagy. Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional organelles such as mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system is particularly dependent on autophagic pathways.

View Article and Find Full Text PDF

Elucidation of the membranes contributing to autophagosomes has been a critical question in the field, and an area of active research. Recently, we showed that key events in autophagosome formation, from PtdIns3P formation/WIPI2 recruitment to LC3-GABARAP membrane conjugation, occur on the RAB11A-positive compartment (recycling endosomes). This observation raised the question of how the LC3-positive autophagosome precursors detach from the recycling endosome.

View Article and Find Full Text PDF

The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases.

View Article and Find Full Text PDF

Autophagy involves engulfment of cytoplasmic contents by double-membraned autophagosomes, which ultimately fuse with lysosomes to enable degradation of their substrates. We recently proposed that the tubular-vesicular recycling endosome membranes were a core platform on which the critical early events of autophagosome formation occurred, including LC3-membrane conjugation to autophagic precursors. Here, we report that the release of autophagosome precursors from recycling endosomes is mediated by DNM2-dependent scission of these tubules.

View Article and Find Full Text PDF

Protein and membrane trafficking pathways are critical for cell and tissue homeostasis. Traditional genetic and biochemical approaches have shed light on basic principles underlying these processes. However, the list of factors required for secretory pathway function remains incomplete, and mechanisms involved in their adaptation poorly understood.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved process across eukaryotes that degrades cargoes like aggregate-prone proteins, pathogens, damaged organelles and macromolecules via delivery to lysosomes. The process involves the formation of double-membraned autophagosomes that engulf the cargoes destined for degradation, sometimes with the help of autophagy receptors like p62, which are themselves autophagy substrates. LC3-II, a standard marker for autophagosomes, is generated by the conjugation of cytosolic LC3-I to phosphatidylethanolamine (PE) on the surface of nascent autophagosomes.

View Article and Find Full Text PDF

The membrane origins of autophagosomes have been a key unresolved question in the field. The earliest morphologically recognizable structure in the macroautophagy/autophagy itinerary is the double-membraned cup-shaped phagophore. Newly formed phosphatidylinositol 3-phosphate (PtdIns3P) on the membranes destined to become phagophores recruits WIPI2, which, in turn, binds ATG16L1 to define the sites of autophagosome formation.

View Article and Find Full Text PDF

Autophagy is a critical pathway that degrades intracytoplasmic contents by engulfing them in double-membraned autophagosomes that are conjugated with LC3 family members. These membranes are specified by phosphatidylinositol 3-phosphate (PI3P), which recruits WIPI2, which, in turn, recruits ATG16L1 to specify the sites of LC3-conjugation. Conventionally, phosphatidylinositides act in concert with other proteins in targeting effectors to specific membranes.

View Article and Find Full Text PDF

Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation.

View Article and Find Full Text PDF

Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value.

View Article and Find Full Text PDF

Autophagy is an important degradation pathway, which is induced after starvation, where it buffers nutrient deprivation by recycling macromolecules in organisms from yeast to man. While the classical pathway mediating this response is via mTOR inhibition, there are likely to be additional pathways that support the process. Here, we identify Annexin A2 as an autophagy modulator that regulates autophagosome formation by enabling appropriate ATG9A trafficking from endosomes to autophagosomes via actin.

View Article and Find Full Text PDF

Phosphatidylinositol 3-phosphate (PI(3)P), the product of class III PI3K VPS34, recruits specific autophagic effectors, like WIPI2, during the initial steps of autophagosome biogenesis and thereby regulates canonical autophagy. However, mammalian cells can produce autophagosomes through enigmatic noncanonical VPS34-independent pathways. Here we show that PI(5)P can regulate autophagy via PI(3)P effectors and thereby identify a mechanistic explanation for forms of noncanonical autophagy.

View Article and Find Full Text PDF

Autophagy is an important catabolic pathway that preserves cellular homeostasis. The formation of autophagosomes is a complex process requiring the reorganization of membranes from different compartments. Here we describe methods to analyze SNARE-dependent vesicular fusion events involving the homotypic and heterotypic fusion of autophagosome precursor structures.

View Article and Find Full Text PDF

Genome-wide association studies have identified several loci associated with Alzheimer's disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo.

View Article and Find Full Text PDF

Autophagosomes are formed by double-membraned structures, which engulf portions of cytoplasm. Autophagosomes ultimately fuse with lysosomes, where their contents are degraded. The origin of the autophagosome membrane may involve different sources, such as mitochondria, Golgi, endoplasmic reticulum, plasma membrane, and recycling endosomes.

View Article and Find Full Text PDF

Autophagic protein degradation is mediated by autophagosomes that fuse with lysosomes, where their contents are degraded. The membrane origins of autophagosomes may involve multiple sources. However, it is unclear if and where distinct membrane sources fuse during autophagosome biogenesis.

View Article and Find Full Text PDF

Inhibition of the insulin/insulin-like growth factor signalling pathway increases lifespan and protects against neurodegeneration in model organisms, and has been considered as a potential therapeutic target. This pathway is upstream of mTORC1, a negative regulator of autophagy. Thus, we expected autophagy to be activated by insulin-like growth factor-1 (IGF-1) inhibition, which could account for many of its beneficial effects.

View Article and Find Full Text PDF

After leaving the endoplasmic reticulum, secretory proteins traverse several membranous transport compartments before reaching their destinations. How they move through the Golgi complex, a major secretory station composed of stacks of membranous cisternae, is a central yet unsettled issue in membrane biology. Two classes of mechanisms have been proposed.

View Article and Find Full Text PDF

Macroautophagy is a bulk degradation process characterised by the formation of double-membrane vesicles, called autophagosomes, which deliver cytoplasmic substrates for degradation in the lysosome. It has become increasingly clear that autophagy intersects with multiple steps of the endocytic and exocytic pathways, sharing many molecular players. A number of Rab and Arf GTPases that are involved in the regulation of the secretory and the endocytic membrane trafficking pathways, have been shown to play key roles in autophagy, adding a new level of complexity to its regulation.

View Article and Find Full Text PDF

Bim is a proapoptotic BH3-only Bcl-2 family member. In response to death stimuli, Bim dissociates from the dynein light chain 1 (DYNLL1/LC8), where it is inactive, and can then initiate Bax/Bak-mediated mitochondria-dependent apoptosis. We found that Bim depletion increases autophagosome synthesis in cells and in vivo, and this effect is inhibited by overexpression of cell death-deficient Bim.

View Article and Find Full Text PDF