Three novel 2,7-substituted acridine derivatives were designed and synthesized to investigate the effect of this functionalization on their interaction with double-stranded and G-quadruplex DNA. Detailed investigations of their ability to bind both forms of DNA were carried out by using spectrophotometric, electrophoretic, and computational approaches. The ligands in this study are characterized by an open-chain (L1) or a macrocyclic (L2, L3) framework.
View Article and Find Full Text PDFThe use of small molecules able to induce and stabilize selected G-quadruplex arrangements can cause telomerase inhibition and telomere dysfunction in cancer cells, thus providing very selective therapeutic approaches. Effective stabilizers usually comprise a planar aromatic portion to grant effective stacking onto the G-quartet and positively charged side chains to exploit the highly negative charge density on the quadruplex grooves. Since the relative position of these two pharmacophoric moieties is expected to play an important role in DNA folding stabilization, we evaluated a series of anthracene derivatives substituted with one or two 4,5-dihydro-1H-imidazol-2-yl-hydrazonic groups (the bisantrene side chain) at different positions of the aromatic system.
View Article and Find Full Text PDFThe stabilisation of different G-quadruplex intra- and intermolecular structures by a number of perylene derivatives characterised by side chains ending with linear or cyclic amines was investigated by electrophoretic (EMSA) and spectroscopic (CD) techniques. The G-rich sequences included the biologically relevant human telomeric TTAGGG runs and the NHE region of the c-myc oncogene. The test compounds could be subdivided into two families: derivatives carrying a cyclic amine in the side chains, which show a reduced binding to the G-quadruplex form, and linear amine congeners, exhibiting enhanced affinity.
View Article and Find Full Text PDFThe telomerase-telomere complex is a prospective anticancer target. To inhibit enzyme activity by induction of G-quadruplex in human telomeres, we have synthesized a small library of 2,6- and 2,7-amino-acyl/ peptidyl anthraquinones with diverse connecting linkers, charge, lipophilicity and bulk. The test compounds modulated G-quadruplex stability to different extents and showed clear preference for quadruplex over duplex DNA.
View Article and Find Full Text PDF