Publications by authors named "Claudia Penafuerte"

Background: The interdependence of cytokines and appetite-modifying hormones implicated in cancer anorexia-cachexia syndrome (CACS) remains unclear. This study aimed to regroup these cytokines and hormones into distinct inflammatory (or non-inflammatory) pathways and determine whether these pathways can classify patients with CACS phenotypes.

Methods: Clinical characteristics of 133 patients [61.

View Article and Find Full Text PDF

The family of protein tyrosine phosphatases (PTPs) includes 107 genes in humans that are diverse in their structures and expression profiles. The majority are present in immune cells and play various roles in either inhibiting or promoting the duration and amplitude of signaling cascades. Several PTPs, including TC-PTP (PTPN2) and SHP-1 (PTPN6), have been recognized as being crucial for maintaining proper immune response and self-tolerance, and have gained recognition as true immune system checkpoint modulators.

View Article and Find Full Text PDF

PTP1B and TC-PTP are highly related protein-tyrosine phosphatases (PTPs) that regulate the JAK/STAT signaling cascade essential for cytokine-receptor activation in immune cells. Here, we describe a novel immunotherapy approach whereby monocyte-derived dendritic cell (moDC) function is enhanced by modulating the enzymatic activities of PTP1B and TC-PTP. To downregulate or delete the activity/expression of these PTPs, we generated mice with PTP-specific deletions in the dendritic cell compartment or used PTP1B and TC-PTP specific inhibitor.

View Article and Find Full Text PDF

Background: Cachexia is a metabolic disorder characterised by muscle wasting, diminished response to anti-cancer treatments and poor quality of life. Our objective was to identify blood-based biomarkers of cachexia in advanced cancer patients. Hence, we characterised the plasma cytokine and blood cell mRNA profiles of patients grouped in three cohorts: patients with cachexia, pre-cachexia (no cachexia but high CRP levels: ⩾ 5 mg l⁻¹) and no cachexia (no cachexia and CRP: < 5 mg l⁻¹).

View Article and Find Full Text PDF

To antagonize tumor-derived TGFβ contemporaneously to anticancer immunotherapy, we genetically engineered a fusion protein coupling IL-2 and the ectodomain of TGFβ receptor II (Fusion of Interleukin-2 and Soluble TGFβ receptor - a.k.a.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a chimeric protein that stimulates B cells (iBEC) to resist TGF-β suppression and produce inflammatory cytokines.
  • These iBECs enhance antigen presentation and activate T cells, retaining essential B-cell identity markers.
  • In mouse models, iBECs showed the potential for complete tumor protection and regression, highlighting their promise as a new therapeutic approach in cancer immunity.
View Article and Find Full Text PDF

Carcinoma derived TGF-β acts as a potent pro-oncogenic factor and suppresses antitumor immunity. To antagonize TGF-β-mediated effects in tandem with a proinflammatory immune stimulus, we generated a chimeric protein borne of the fusion of IL-2 and the soluble extracellular domain of TGF-βR II (FIST). FIST acts as a decoy receptor trapping active TGF-β in solution and interacts with IL-2-responsive lymphoid cells, inducing a distinctive hyperactivation of STAT1 downstream of IL-2R, which in turn promotes SMAD7 overexpression.

View Article and Find Full Text PDF

Natural killer (NK) cells are appealing cellular pharmaceuticals for cancer therapy because of their innate ability to recognize and kill tumor cells. Therefore, the development of methods that can enhance the potency in their anticancer effect would be desirable. We have previously shown that a murine granulocyte macrophage colony-stimulating factor (GM-CSF)/interleukin 2 (IL-2) fusion protein displays novel antitumor properties in vivo compared with both cytokines in combination due to recruitment of NK cells.

View Article and Find Full Text PDF

Interferon regulatory factors (IRFs) are involved in gene regulation in many biological processes including the antiviral, growth regulatory, and immune modulatory functions of the interferon system. Several studies have demonstrated that IRF-3, IRF-5, and IRF-7 specifically contribute to the innate antiviral response to virus infection. It has been reported that virus-specific phosphorylation leads to IRF-5 nuclear localization and up-regulation of interferon, cytokine, and chemokine gene expression.

View Article and Find Full Text PDF