Publications by authors named "Claudia Pappalardo"

Environmental pollutants are claimed to be major factors involved in the progressive decline of the fertility rate worldwide. Exposure to the heavy metal Cadmium (Cd) has been associated with reproductive toxicity due to its ionic mimicry. However, the possible direct accumulation of Cd in human sperm cells has been poorly investigated.

View Article and Find Full Text PDF

Calorie restriction is recognized as a useful nutritional approach to improve the endocrine derangements and low fertility profile associated with increased body weight. This is particularly the case for dietary regimens involving ketosis, resulting in increased serum levels of ketone bodies such as β-hydroxy-butyrate (β-HB). In addition to serum, β-HB is detected in several biofluids and β-HB levels in the follicular fluid are strictly correlated with the reproductive outcome in infertile females.

View Article and Find Full Text PDF

Perfluoroalkyl substances (PFASs) are persistent pollutants, raising concerns for human health. Legacy PFAS perfluoro-octanoic acid (PFOA) accumulate in brains of people at high environmental exposure, especially in areas enriched with dopaminergic neurons (DN). exposure to 10 ng/mL PFOA for 24 h was also associated with an altered molecular and functional phenotype of DN differentiated from human induced pluripotent stem cells (hiPSCs).

View Article and Find Full Text PDF

From seminal evidence in the early 2000s, the opportunity to drive the specific knockdown of a protein of interest (POI) through pharmacological entities called Proteolysis Targeting Chimeric molecules, or PROTACs, has become a possible therapeutic option with the involvement of these compounds in clinical trials for cancers and autoimmune diseases. The fulcrum of PROTACs pharmacodynamics is to favor the juxtaposition between an E3 ligase activity and the POI, followed by the ubiquitination of the latter and its degradation by the proteasome system. In the face of an apparently modular design of these drugs, being constituted by an E3 ligase binding moiety and a POI-binding moiety connected by a linker, the final structure of an efficient PROTAC degradation enhancer often goes beyond the molecular descriptors known to influence the biological activity, specificity, and pharmacokinetics, requiring a rational improvement through appropriate molecular strategies.

View Article and Find Full Text PDF