Publications by authors named "Claudia P Alvarez-Baron"

Article Synopsis
  • The study investigates the role of caveolae, small membrane structures, in the functioning and regulation of heart pacemaker cells in the sinoatrial node (SAN), aiming to better understand heart rhythm and dysfunction.
  • Researchers used various techniques, including biochemical analyses and advanced imaging, on both mouse models and human heart samples to explore how caveolae interact with key ion channels and proteins involved in pacemaking.
  • Findings revealed that caveolae compartmentalize essential proteins, ensuring effective heart function; their disruption led to reduced heart pacemaking ability, contributing to sinoatrial node dysfunction.
View Article and Find Full Text PDF

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate rhythmic activity in the heart and brain. Isoform-specific functional differences reflect the specializations required for the various roles that they play. Despite a high sequence and structural similarity, HCN isoforms differ greatly in their response to cyclic nucleotides.

View Article and Find Full Text PDF

The circadian system controls the daily rhythms of a variety of physiological processes. Most organisms show physiological, metabolic and behavioral rhythms that are coupled to environmental signals. In humans, the main synchronizer is the light/dark cycle, although non-photic cues such as food availability, noise, and work schedules are also involved.

View Article and Find Full Text PDF

The growth of many human breast tumors requires the proliferative effect of estrogen acting via the estrogen receptor α (ERα). ERα signaling is therefore a clinically important target for breast cancer prevention and therapeutics. Although extensively studied, the mechanism by which ERα promotes proliferation remains to be fully established.

View Article and Find Full Text PDF

Large-conductance (BK(Ca) type) Ca(2+)-activated K(+) channels encoded by the Slo1 gene and various canonical transient receptor potential channels (TRPCs) are coexpressed in many cell types, including podocytes (visceral epithelial cells) of the renal glomerulus. In this study, we show by coimmunoprecipitation and GST pull-down assays that BK(Ca) channels can associate with endogenous TRPC3 and TRPC6 channels in differentiated cells of a podocyte cell line. Both types of TRPC channels colocalize with Slo1 in podocytes and in human embryonic kidney (HEK) 293T cells transiently coexpressing the TRPC channels with Slo1.

View Article and Find Full Text PDF