Activation of the Keap1/Nrf2 pathway, the most important cell defense signal, triggered to neutralize the harmful effects of electrophilic and oxidative stress, plays a crucial role in cell survival. Therefore, its ability to attenuate acute and chronic liver damage, where oxidative stress represents the key player, is not surprising. On the other hand, while Nrf2 promotes proliferation in cancer cells, its role in non-neoplastic hepatocytes is a matter of debate.
View Article and Find Full Text PDFBackground & Aims: Only limited therapeutic options are currently available for hepatocellular carcinoma (HCC), making the development of effective alternatives essential. Based on the recent finding that systemic or local hypothyroidism is associated with HCC development in humans and rodents, we investigated whether the thyroid hormone triiodothyronine (T3) could inhibit the progression of HCCs.
Methods: Different rat and mouse models of hepatocarcinogenesis were investigated.
Background & Aims: Dysregulation of the Keap1-Nrf2 pathway has been observed in experimental and human tumors, suggesting possible roles of the pathway in cancer development. Herein, we examined whether Nrf2 (Nfe2l2) activation occurs at early steps of rat hepatocarcinogenesis, to assess critical contributions of Nrf2 to the onset of hepatocellular carcinoma (HCC).
Methods: We used wild-type (WT) and Nrf2 knockout (Nrf2KO) rats treated with a single injection of diethylnitrosamine (DENA) followed by choline-devoid methionine-deficient (CMD) diet.