Lancet Planet Health
September 2024
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally.
View Article and Find Full Text PDFUnlabelled: The Countdown is an international research collaboration that independently monitors the evolving impacts of climate change on health, and the emerging health opportunities of climate action. In its eighth iteration, this 2023 report draws on the expertise of 114 scientists and health practitioners from 52 research institutions and UN agencies worldwide to provide its most comprehensive assessment yet. In 2022, the Countdown warned that people’s health is at the mercy of fossil fuels and stressed the transformative opportunity of jointly tackling the concurrent climate change, energy, cost-of-living, and health crises for human health and wellbeing.
View Article and Find Full Text PDFLow-field (LF) benchtop NMR is a new family of instruments available on the market, promising for fast metabolic fingerprinting and targeted quantification of specific metabolites despite a lack of sensitivity and resolution with respect to high-field (HF) instruments. In the present study, we evaluated the possibility to use the urinary metabolic fingerprint generated using a benchtop LF NMR instrument for an early detection of sepsis in preterm newborns, considering a cohort of neonates previously investigated by untargeted metabolomics based on Mass Spectrometry (MS). The classifier obtained behaved similarly to that based on MS, even if different classes of metabolites were taken into account.
View Article and Find Full Text PDFForty years (1980-2019) of reanalysis data were used to investigate climatology and trends of heat stress in the Caribbean region. Represented via the Universal Thermal Climate Index (UTCI), a multivariate thermophysiological-relevant parameter, the highest heat stress is found to be most frequent and geographically widespread during the rainy season (August, September, and October). UTCI trends indicate an increase of more than 0.
View Article and Find Full Text PDFThe Wet Bulb Globe Temperature (WBGT) is an international standard heat index used by the health, industrial, sports, and climate sectors to assess thermal comfort during heat extremes. Observations of its components, the globe and the wet bulb temperature (WBT), are however sparse. Therefore WBGT is difficult to derive, making it common to rely on approximations, such as the ones developed by Liljegren et al.
View Article and Find Full Text PDFThis brief background highlights Brazil as a 'climate-health hotspot', i.e. a country where climate affects local populations negatively through multiple pathways (Di Napoli et al.
View Article and Find Full Text PDFUnlabelled: The 2022 report of the Countdown is published as the world confronts profound and concurrent systemic shocks. Countries and health systems continue to contend with the health, social, and economic impacts of the COVID-19 pandemic, while Russia’s invasion of Ukraine and a persistent fossil fuel overdependence has pushed the world into global energy and cost-of-living crises. As these crises unfold, climate change escalates unabated.
View Article and Find Full Text PDFOutdoor thermal comfort (OTC) surveys require synchronous monitoring of meteorological variables for direct comparisons against subjective thermal perception. The Universal Thermal Climate Index (UTCI) is a feasible index as it integrates meteorological conditions as a single value irrespective of urban morphological attributes or biological sex, age and body mass. ERA5-HEAT (Human thErmAl comforT) is a downloadable reanalysis dataset providing hourly grids of UTCI climate records at 0.
View Article and Find Full Text PDFBackground: In the past decades, climate change has been impacting human lives and health via extreme weather and climate events and alterations in labour capacity, food security, and the prevalence and geographical distribution of infectious diseases across the globe. Climate change and health indicators (CCHIs) are workable tools designed to capture the complex set of interdependent interactions through which climate change is affecting human health. Since 2015, a novel sub-set of CCHIs, focusing on climate change impacts, exposures, and vulnerability indicators (CCIEVIs) has been developed, refined, and integrated by Working Group 1 of the "Lancet Countdown: Tracking Progress on Health and Climate Change", an international collaboration across disciplines that include climate, geography, epidemiology, occupation health, and economics.
View Article and Find Full Text PDFUnlabelled: The Countdown is an international collaboration that independently monitors the health consequences of a changing climate. Publishing updated, new, and improved indicators each year, the Countdown represents the consensus of leading researchers from 43 academic institutions and UN agencies. The 44 indicators of this report expose an unabated rise in the health impacts of climate change and the current health consequences of the delayed and inconsistent response of countries around the globe—providing a clear imperative for accelerated action that puts the health of people and planet above all else.
View Article and Find Full Text PDFAir temperature has been the most commonly used exposure metric in assessing relationships between thermal stress and mortality. Lack of the high-quality meteorological station data necessary to adequately characterize the thermal environment has been one of the main limitations for the use of more complex thermal indices. Global climate reanalyses may provide an ideal platform to overcome this limitation and define complex heat and cold stress conditions anywhere in the world.
View Article and Find Full Text PDFFor the Chinese, French, German, and Spanish translations of the abstract see Supplementary Materials section.
View Article and Find Full Text PDFNuclear Magnetic Resonance (NMR) is an analytical technique extensively used in almost every chemical laboratory for structural identification. This technique provides statistically equivalent signals in spite of using spectrometer with different hardware features and is successfully used for the traceability and quantification of analytes in food samples. Nevertheless, to date only a few internationally agreed guidelines have been reported on the use of NMR for quantitative analysis.
View Article and Find Full Text PDFIn human biometeorology, the estimation of mean radiant temperature (MRT) is generally considered challenging. This work presents a general framework to compute the MRT at the global scale for a human subject placed in an outdoor environment and irradiated by solar and thermal radiation both directly and diffusely. The proposed framework requires as input radiation fluxes computed by numerical weather prediction (NWP) models and generates as output gridded globe-wide maps of MRT.
View Article and Find Full Text PDFCompound and cascading natural hazards usually cause more severe impacts than any of the single hazard events alone. Despite the significant impacts of compound hazards, many studies have only focused on single hazards. The aim of this paper is to investigate spatio-temporal patterns of compound and cascading hazards using historical data for dry hazards, namely heatwaves, droughts, and fires across Europe.
View Article and Find Full Text PDFHeat stress and forest fires are often considered highly correlated hazards as extreme temperatures play a key role in both occurrences. This commonality can influence how civil protection and local responders deploy resources on the ground and could lead to an underestimation of potential impacts, as people could be less resilient when exposed to multiple hazards. In this work, we provide a simple methodology to identify areas prone to concurrent hazards, exemplified with, but not limited to, heat stress and fire danger.
View Article and Find Full Text PDFIn this work, the potential of the Universal Thermal Climate Index (UTCI) as a heat-related health risk indicator in Europe is demonstrated. The UTCI is a bioclimate index that uses a multi-node human heat balance model to represent the heat stress induced by meteorological conditions to the human body. Using 38 years of meteorological reanalysis data, UTCI maps were computed to assess the thermal bioclimate of Europe for the summer season.
View Article and Find Full Text PDFThere is increasing evidence showing that cytosolic lipid droplets, present in all eukaryotic cells, play a key role in many cellular functions. Yet their composition at the individual droplet level and how it evolves over time in living cells is essentially unknown due to the lack of suitable quantitative nondestructive measurement techniques. In this work, we demonstrate the ability of label-free hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy, together with a quantitative image analysis algorithm developed by us, to quantify the lipid type and content in vol/vol concentration units of individual lipid droplets in living human adipose-derived stem cells during differentiation over 9 days in media supplemented with different fatty acids.
View Article and Find Full Text PDFAn interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture.
View Article and Find Full Text PDFIn this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200-2000/cm) and in the CH stretch region (2600-3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source.
View Article and Find Full Text PDFWe have investigated the ability of dual-frequency Coherent Antistokes Raman Scattering (D-CARS) micro-spectroscopy, based on femtosecond pulses (100 fs or 5 fs) spectrally focussed by glass dispersion, to distinguish the chemical composition of micron-sized lipid droplets consisting of different triglycerides types (poly-unsaturated glyceryl trilinolenate, mono-unsaturated glyceryl trioleate and saturated glyceryl tricaprylate and glyceryl tristearate) in a rapid and label-free way. A systematic comparison of Raman spectra with CARS and D-CARS spectra was used to identify D-CARS spectral signatures which distinguish the disordered poly-unsaturated lipids from the more ordered saturated ones both in the CH-stretch vibration region and in the fingerprint region, without the need for lengthy CARS multiplex acquisition and analysis. D-CARS images of the lipid droplets at few selected wavenumbers clearly resolved the lipid composition differences, and exemplify the potential of this technique for label-free chemically selective rapid imaging of cytosolic lipid droplets in living cells.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis and is highly chemoresistant. Early detection is the only means to impact long-term survival, but screening methods are lacking. Given the complex and heterogeneous nature of pancreatic cancer, unbiased analytical methods such as metabolomics by nuclear magnetic resonance (NMR) spectroscopy show promise to identify disease-specific molecular fingerprints.
View Article and Find Full Text PDFWhen small B lymphocytes bind antigen in the context of suitable signals, a profound geno-proteomic metamorphosis is activated that generates antibody-secreting cells. To study the metabolic changes associated with this differentiation program, we compared the exometabolome of differentiating murine B lymphoma cells and primary B cells by monodimensional proton nuclear magnetic resonance spectroscopy and mass spectrometry coupled to liquid chromatography. Principal component analysis, a multivariate statistical analysis, highlighted metabolic hallmarks of the sequential differentiation phases discriminating between the proliferation and antibody secreting phases and revealing novel metabolic pathways.
View Article and Find Full Text PDF