Morphogenetic gradients specify distinct cell populations within tissues. Originally, morphogens were conceived as substances that act on a static field of cells, yet cells usually move during development. Thus, the way cell fates are defined in moving cells remains a significant and largely unsolved problem.
View Article and Find Full Text PDFCourtship is a widespread behavior in which one gender conveys to the other a series of cues about their species identity, gender, and suitability as mates. In many species, females decode these male displays and either accept or reject them. Despite the fact that courtship has been investigated for a long time, the genes and circuits that allow females to generate these mutually exclusive responses remain largely unknown.
View Article and Find Full Text PDFMorphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient.
View Article and Find Full Text PDFSpecification of germ layers along the dorsoventral axis by morphogenetic gradients is an ideal model to study scaling properties of gradients and cell fate changes during evolution. Classical anatomical studies in divergent insects (e.g.
View Article and Find Full Text PDFSeveral well-known morphogenetic gradients and cellular movements occur along the dorsal/ventral axis of the Drosophila embryo. However, the current techniques used to view such processes are somewhat limited. The following protocol describes a new technique for mounting fixed and labeled Drosophila embryos for coronal viewing with confocal imaging.
View Article and Find Full Text PDFThe genetic systems controlling body axis formation trace back as far as the ancestor of diploblasts (corals, hydra, and jellyfish) and triploblasts (bilaterians). Comparative molecular studies, often referred to as evo-devo, provide powerful tools for elucidating the origins of mechanisms for establishing the dorsal-ventral and anterior-posterior axes in bilaterians and reveal differences in the evolutionary pressures acting upon tissue patterning. In this Review, we focus on the origins of nervous system patterning and discuss recent comparative genetic studies; these indicate the existence of an ancient molecular mechanism underlying nervous system organization that was probably already present in the bilaterian ancestor.
View Article and Find Full Text PDFSubdivision of the neuroectoderm into three rows of cells along the dorsal-ventral axis by neural identity genes is a highly conserved developmental process. While neural identity genes are expressed in remarkably similar patterns in vertebrates and invertebrates, previous work suggests that these patterns may be regulated by distinct upstream genetic pathways. Here we ask whether a potential conserved source of positional information provided by the BMP signaling contributes to patterning the neuroectoderm.
View Article and Find Full Text PDFThe dorsoventral axis of the Drosophila embryo is patterned by a gradient of bone morphogenetic protein (BMP) ligands. In a process requiring at least three additional extracellular proteins, a broad domain of weak signaling forms and then abruptly sharpens into a narrow dorsal midline peak. Using experimental and computational approaches, we investigate how the interactions of a multiprotein network create the unusual shape and dynamics of formation of this gradient.
View Article and Find Full Text PDFFor more than 80 years, the euchromatic right arm of the Drosophila fourth chromosome (101F-102F) has been one of the least genetically accessible regions of the fly genome despite the fact that many important genes reside there. To improve the mapping of genes on the fourth chromosome, we describe a strategy to generate targeted deficiencies and we describe 13 deficiencies that subdivide the 300 kb between the cytological coordinates 102A6 and 102C1 into five discrete regions plus a 200-kb region from 102C1 to 102D6. Together these deficiencies substantially improve the mapping capabilities for mutant loci on the fourth chromosome.
View Article and Find Full Text PDF