Publications by authors named "Claudia Martini"

This paper reports the study of some 2-arylpyrazolo[3,4-c]quinolin-4-ones, 4-amines, and 4-amino-substituted derivatives designed as human A3 adenosine receptor (AR) antagonists. Most of the herein reported compounds showed a nanomolar affinity toward the hA3 receptor subtype and different degrees of selectivity that resulted to be strictly dependent on the presence and nature of the substituent on the 4-amino group. Bulky and lipophilic acyl groups, as well as the benzylcarbamoyl residue, afforded highly potent and selective hA3 receptor antagonists.

View Article and Find Full Text PDF

The first effects of 3,4-methylen-dioxy-metamphetamine (MDMA, "ecstasy"), on serotonin 1A (5-HT(1A)) receptors in rat hippocampus were determined by means of [(3)H]-8-hydroxy-dipropylamino-tetralin ([(3)H]-8-OH-DPAT) and 5'guanosine-(gamma-[(35)S]-thio)triphosphate ([(35)S]-GTPgammaS) binding as well as inhibition of forskolin (FK)-stimulated adenylyl cyclase (AC) activity. The study was completed by [(35)S]-GTPgammaS functional autoradiography experiments carried out in frontal sections of rat brain, including the hippocampal region. Results showed that MDMA was either able to displace [(3)H]-8-OH-DPAT binding (K(i) congruent with 500 nM) or to reduce the number of specific sites (B(max)) without affecting K(d).

View Article and Find Full Text PDF

Background: Brain-derived neurotrophic factor (BDNF) has been hypothesized to be involved in the neurobiology of major depression. The aim of this study was to assess the possible relationships between depressive symptoms and serum and/or plasma BDNF levels during 1 year of antidepressant treatment.

Methods: Plasma and serum BDNF levels were assayed in 15 drug-free depressed patients and in 15 healthy control subjects at baseline and the 1st, 3rd, 6th and 12th month of antidepressant treatment.

View Article and Find Full Text PDF

Different cytochromes P450 are involved in steroid biosynthesis. These cytochromes have heme as the prosthetic group. We previously reported that ACTH, an activator of glucocorticoid biosynthesis in adrenal, requires heme biosynthesis for a maximal response.

View Article and Find Full Text PDF

Novel N-substituted indol-3-ylglyoxylamides (10-37) were synthesized and evaluated as ligands of the benzodiazepine receptor (BzR). In an effort to achieve affinity-based selectivity among BzR subtypes, these compounds were designed to probe the LDi and L2 lipophilic regions. Taking the alpha1-selective benzylindolylglyoxylamides Ia and Ib as leads, we varied the substituent on the benzylamide phenyl ring (compounds 10-23) or replaced the benzyl moiety with alkyl groups (compounds 24-37).

View Article and Find Full Text PDF

The synthesis and the binding study of new 3-iodiopyrazolo[5,1-c][1,2,4] benzotriazine 5-oxides 8-alkyloxy substituted are reported. The replacement at position 3 with an iodine atom, with respect to substituents capable to form a three centered hydrogen bond and/or to form pi-pi stacking interaction with receptor protein, gave high affinity ligands, independently of the 8-alkyloxy substituent. High-affinity ligands were studied in mice in vivo for their pharmacological effects, considering five potential benzodiazepine actions: anxiolytic-like effects, motor coordination, anticonvulsant action, mouse learning and memory impairment, and ethanol-potentiating action.

View Article and Find Full Text PDF

Fluorescent ligands for the peripheral-type benzodiazepine receptor (PBR) featuring the 7-nitrobenz-2-oxa-1,3-diazol-4-yl moiety were synthesized, based on N,N-dialkyl-2-phenylindol-3-ylglyoxylamides, a potent, selective class of PBR ligands previously described by us. All the new ligands are moderately to highly potent at the PBR, with a complete selectivity over the central benzodiazepine receptor. Results from fluorescence microscopy showed that these probes specifically labeled the PBR at the mitochondrial level in C6 glioma cells.

View Article and Find Full Text PDF

Nucleotides and cysteinyl-leukotrienes (CysLTs) are unrelated signaling molecules inducing multiple effects through separate G-protein-coupled receptors: the P2Y and the CysLT receptors. Here we show that GPR17, a Gi-coupled orphan receptor at intermediate phylogenetic position between P2Y and CysLT receptors, is specifically activated by both families of endogenous ligands, leading to both adenylyl cyclase inhibition and intracellular calcium increases. Agonist-response profile, as determined by [(35)S]GTPgammaS binding, was different from that of already known CysLT and P2Y receptors, with EC(50) values in the nanomolar and micromolar range, for CysLTs and uracil nucleotides, respectively.

View Article and Find Full Text PDF

A structural investigation on some 4-amido-2-phenyl-1,2-dihydro-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, designed as human A3 adenosine receptor (hA3 AR) antagonists, is described. In the new derivatives, some acyl residues with different steric bulk were introduced on the 4-amino group, and their combination with the 4-methoxy group on the 2-phenyl moiety, and/or the 6-nitro/6-amino substituent on the fused benzo ring, was also evaluated. Most of the new derivatives were potent and selective hA3 AR antagonists.

View Article and Find Full Text PDF

N-(heteroarylmethyl)indol-3-ylglyoxylamides (1-26) were synthesized and evaluated as ligands of the benzodiazepine receptor (BzR) to probe the hydrogen bonding properties of the so-called S(1) site of the BzR by means of suitable heterocyclic side chains. SARs were developed in light of our hypothesis of binding modes A and B. Pyrrole and furan derivatives adopting mode A (2, 8, 10, 20, 22) turned out to be more potent (K(i) values < 35 nM) than their analogues lacking hydrogen bonding heterocyclic side chains.

View Article and Find Full Text PDF

Antipsychotic drugs, potent dopamine receptor antagonists, are commonly used in the treatment of psychotic and affective illness. The discovery of antagonistic interactions between A2A adenosine receptors (ARs) and D2 dopamine receptors (DRs) in the central nervous system suggests that the adenosine system may be involved in the pathogenesis of psychiatric and neurological disorders. In the present study, we demonstrated for the first time that human platelets co-express A2A ARs and D2 DRs assembled into an heteromeric complexes.

View Article and Find Full Text PDF

The Cambridge Structural Database (CSD) was searched through two 3D queries based on substructures shared by well-known antagonists at the A(1) and A(3) adenosine receptors (ARs). Among the resulting 557 hits found in the CSD, we selected five compounds to purchase, synthesize, or translate synthetically into analogues better tailored to interact with the biological targets. Binding experiments using human ARs showed that four out of five tested compounds turned out to be antagonists at the A(1)AR or A(3)AR with K(i) values between 50 and 440 nM.

View Article and Find Full Text PDF

A number of 4-oxo-substituted 1,2,4-triazolo[1,5-a]quinoxaline derivatives bearing at position-2 the claimed (hetero)aryl moiety (compounds 1-15) but also a carboxylate group (16-28, 32-36) or a hydrogen atom (29-31) were designed as human A3 (hA3) adenosine receptor (AR) antagonists. This study produced some interesting compounds and among them the 2-(4-methoxyphenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-one (8), which can be considered one of the most potent and selective hA3 adenosine receptor antagonists reported till now. Moreover, as a new finding, replacement of the classical 2-(hetero)aryl moiety with a 2-carboxylate function (compounds 16-28 and 32-36) maintained good hA3 AR binding activity but, most importantly and interestingly, produced a large increase in hA3 versus hA1 selectivity.

View Article and Find Full Text PDF

A number of 4-aminopyrazolo[3,4-b]pyridines 5-carboxylic acid esters (2-8) were synthesized and evaluated for their binding affinity at the A1, A2A, and A3 adenosine receptors (AR), in bovine cortical membranes, as well as for their affinity toward human A1AR (hA1AR). Some of the new compounds were characterized by a high affinity and selectivity toward the A1 receptor subtype, showing a significant improvement in comparison with other pyrazolo-pyridines previously reported in the literature. In particular the methyl ester 2h as well as the isopropyl ester 5h, both of them bearing a p-methoxyphenylethylamino side chain at the position 4, presented Ki values of 6 and 7 nM, respectively.

View Article and Find Full Text PDF

In our pursuit to identify selective ligands for Bz/GABA(A) receptor subtypes, a novel pyrazolo[1,5-a]pyrimidine derivative (4), the azaisostere of zolpidem, was synthesized and evaluated in vitro on bovine brain homogenate and on recombinant benzodiazepine receptors (alphaxbeta2/3gamma2, x = 1-3, 5) expressed in HEK293 cells. Compound 4 displayed affinity only for alpha1beta2gamma2 subtype (K(i) = 31 nM), and in an in-depth, in vivo study it revealed sedative and anxiolytic-like properties without any amnesic and myorelaxant effects in rodents.

View Article and Find Full Text PDF

The synthesis and the binding study of new 3-arylesters and 3-heteroarylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide 8-substituted are reported. The nature of these substituents (in terms of lipophilic and electronic features) seems to influence the binding affinity. High-affinity ligands were studied in mice in vivo for their pharmacological effects, considering six potential benzodiazepine actions: anxiolytic-like effects, muscle relaxant effects, motor coordination, anticonvulsant action, spontaneous motor activity, and ethanol-potentiating action.

View Article and Find Full Text PDF

Peripheral benzodiazepine receptor (PBR) has been considered a promising drug target for cancer therapy, and several ligands have been developed for this purpose. Human T-lymphoma Jurkat cells have been considered as lacking PBR and are often used as negative control to prove the specificity of PBR ligands effects. It is surprising that we evidenced PBR protein expression in this cell line by means of Western blotting and immunocytochemistry assays using specific anti-PBR antibodies.

View Article and Find Full Text PDF

This study reports the synthesis of a number of 1- and 2-alkyl derivatives of the 4-aminopyrazolo[3,4-d]pyrimidine (APP) nucleus and their evaluation as inhibitors of ADA from bovine spleen. The 2-substituted aminopyrazolopyrimidines proved to be potent inhibitors, most of them exhibiting K(i) values in the nanomolar/subnanomolar range. In this series the inhibitory activity is enhanced with the increase in length of the alkyl chain, reaching a maximum with the n-decyl substituent.

View Article and Find Full Text PDF

In bipolar patients, maintenance treatment with anticonvulsive agents is a valid alternative to lithium. These agents have widely varying mechanisms of action. Some of these medications focus on the current understanding of antiglutamatergic mechanisms of action and their treatment implications for bipolar disorders.

View Article and Find Full Text PDF

Extracellular ATP and P2 receptors may play a crucial role in the neurodegeneration of the CNS. Here, we investigated in neuronal cerebellar granule cultures the biological effect of the quite stable P2 receptor agonist ATPgammaS and compare it to the cytotoxic action of ATP. Time-course experiments showed that 500 microM ATPgammaS causes 50-100% cell death in 15-24 h.

View Article and Find Full Text PDF

A series of ethyl 4-amino-1-(2-chloro-2-phenylethyl)-6-oxo-6,7-dihydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylates () has been synthesized as potential A(1) adenosine receptor (A(1) AR) ligands. Binding affinities of the new compounds were determined for adenosine A(1), A(2A) and A(3) receptors. Compounds and showed good affinity (K(i)= 299 nM and 517 nM, respectively) and selectivity towards A(1) AR, whereas showed good affinity for A(2A) AR (K(i)= 290 nM), higher than towards A(1) AR (K(i)= 1000 nM).

View Article and Find Full Text PDF

The present paper reports the synthesis and binding studies of new 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamides as selective Peripheral Benzodiazepine Receptor (PBR) ligands. The variability of substituents at the 3-position was investigated and a 3D-QSAR model was proposed to evaluate the effect of different substitutions on the acetamide moiety. In addition, a subset of the novel compounds showing high affinity for PBR was tested for their ability to modulate the steroid biosynthesis in C6 glioma cells.

View Article and Find Full Text PDF

Mitochondrial benzodiazepine-receptor (mBzR) ligands constitute a heterogeneous class of compounds that show a pleiotropic spectrum of effects within the cells, including the modulation of apoptosis. In this paper, a novel synthetic 2-phenylindol-3-ylglyoxylamide derivative, N,N-di-n-butyl-5-chloro-2-(4-chlorophenyl)indol-3-ylglyoxylamide (PIGA), which shows high affinity and selectivity for the mBzR, is demonstrated to induce apoptosis in rat C6 glioma cells. PIGA was able to dissipate mitochondrial transmembrane potential (DeltaPsim) and to cause a significant cytosolic accumulation of cytochrome c.

View Article and Find Full Text PDF

Rationale: Although it is still a matter of debate whether panic disorder (PD) and separation anxiety (SA) are associated or causally linked disorders, some investigators have suggested that SA may be a specific subtype of panic-agoraphobic spectrum. Several psychiatric disorders, including PD, are associated with lower levels of peripheral-type benzodiazepine receptor (PBR).

Objectives: The aim of the present study was to evaluate the kinetic binding parameters of the specific PBR ligand, PK 11195, in platelets from patients with PD in relation to the presence and severity of adulthood SA.

View Article and Find Full Text PDF

A series of 2-phenyl[1,2,3]triazolo[1,2-a][1,2,4]benzotriazin-1,5(6H)-diones (PTBTs), VII, were prepared and tested at the central benzodiazepine receptor (BzR). The skeleton of these compounds was designed by formally combining the N-C=O moieties of the known BzR ligands, triazoloquinoxalines (IV) and triazinobenzimidazoles (ATBIs) (VI). Most of the PTBTs displayed submicromolar/nanomolar potency at the BzR.

View Article and Find Full Text PDF