Numerous studies are revealing a role of exosomes in intercellular communication, and growing evidence indicates an important function for these vesicles in the progression and pathogenesis of cancer and neurodegenerative diseases. However, the biogenesis process of exosomes is still unclear. Tissue transglutaminase (TG2) is a multifunctional enzyme with different subcellular localizations.
View Article and Find Full Text PDFAutophagy is a self-degradative physiological process by which the cell removes worn-out or damaged components. Constant at basal level it may become highly active in response to cellular stress. The type 2 transglutaminase (TG2), which accumulates under stressful cell conditions, plays an important role in the regulation of autophagy and cells lacking this enzyme display impaired autophagy/mitophagy and a consequent shift their metabolism to glycolysis.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a key organelle fundamental for the maintenance of cellular homeostasis and the determination of cell fate under stress conditions. Reticulon-1C (RTN-1C) is a member of the reticulon family proteins localized primarily on the ER membrane and known to regulate ER structure and function. Several cellular processes depend on the structural and functional crosstalk between different organelles, particularly on the endoplasmic reticulum and mitochondria.
View Article and Find Full Text PDFAutophagy maintains cellular homeostasis by degrading harmful or unnecessary intracellular components. How the autophagy response is induced rapidly and transiently remains largely unknown. We report that the E3 ubiquitin ligases Cullin-5 and Cullin-4 regulate the onset and termination of autophagy, respectively, by dynamically interacting with AMBRA1, a regulator of autophagy.
View Article and Find Full Text PDFTransglutaminase 2 (TG2) is a multifunctional protein with Ca(2+)-dependent transamidating and G protein activity. Previously, we reported that tgm2 -/- mice have an impaired insulin secretion and that naturally occurring TG2 mutations associated with familial, early-onset type 2 diabetes, show a defective transamidating activity. Aim of this study was to get a better insight into the role of TG2 in insulin secretion by identifying substrates of TG2 transamidating activity in the pancreatic beta cell line INS-1E.
View Article and Find Full Text PDF