Publications by authors named "Claudia Mandl"

We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation.

View Article and Find Full Text PDF

The expression of growth/differentiation factor (GDF) 15 increases in the ganglionic eminence (GE) late in neural development, especially in neural stem cells (NSCs). However, GDF15 function in this region remains unknown. We report that GDF15 receptor is expressed apically in the GE and that GDF15 ablation promotes proliferation and cell division in the embryonic GE and in the adult ventricular-subventricular zone (V-SVZ).

View Article and Find Full Text PDF

According to the current consensus, murine neural stem cells (NSCs) apically contacting the lateral ventricle generate differentiated progenitors by rare asymmetric divisions or by relocating to the basal side of the ventricular-subventricular zone (V-SVZ). Both processes will ultimately lead to the generation of adult-born olfactory bulb (OB) interneurons. In contrast to this view, we here find that adult-born OB interneurons largely derive from an additional NSC-type resident in the basal V-SVZ.

View Article and Find Full Text PDF

In the adult subependymal zone (SEZ), neural stem cells (NSCs) apically contacting the lateral ventricle on activation generate progenitors proliferating at the niche basal side. We here show that Tailless (TLX) coordinates NSC activation and basal progenitor proliferation by repressing the NOTCH effector Hes1. Consistent with this, besides quiescence Hes1 expression also increases on Tlx mutation.

View Article and Find Full Text PDF

In the adult mammalian brain, the apical surface of the subependymal zone (SEZ) is covered by many motile ependymal cilia and a few primary cilia originating from rare intermingled neural stem cells (NSCs). In NSCs the primary cilia are key for the transduction of essential extracellular signals such as Sonic hedgehog (SHH) and platelet-derived growth factor (PDGF). Despite their importance, the analysis of NSC primary cilia is greatly hampered by the fact that they are overwhelmingly outnumbered by the motile cilia.

View Article and Find Full Text PDF

Activation of γ-aminobutyric A receptors (GABA(A)Rs) in the subependymal zone (SEZ) induces hyperpolarization and osmotic swelling in precursors, thereby promoting surface expression of the epidermal growth factor receptor (EGFR) and cell cycle entry. However, the mechanisms underlying the GABAergic modulation of cell swelling are unclear. Here, we show that GABA(A)Rs colocalize with the water channel aquaporin (AQP) 4 in prominin-1 immunopositive (P(+)) precursors in the postnatal SEZ, which include neural stem cells.

View Article and Find Full Text PDF

The activation of epidermal growth factor receptor (EGFR) affects multiple aspects of neural precursor behaviour, including proliferation and migration. Telencephalic precursors acquire EGF responsiveness and upregulate EGFR expression at late stages of development. The events regulating this process and its significance are still unclear.

View Article and Find Full Text PDF

Neural stem cells (NSCs) generate new neurons in vivo and in vitro throughout adulthood and therefore are physiologically and clinically relevant. Unveiling the mechanisms regulating the lineage progression from NSCs to newborn neurons is critical for the transition from basic research to clinical application. However, the direct analysis of NSCs and their progeny is still elusive due to the problematic identification of the cells.

View Article and Find Full Text PDF

The transcription factor CREB (cAMP-response element binding protein) regulates differentiation, migration, survival and activity-dependent gene expression in the developing and mature nervous system. However, its specific role in the proliferation of embryonic neural progenitors is still not completely understood. Here we investigated how CREB regulates proliferation of mouse embryonic neural progenitors by a conditional mutant lacking Creb gene in neural progenitors.

View Article and Find Full Text PDF

Signal-regulated changes in cell size affect cell division and survival and therefore are central to tissue morphogenesis and homeostasis. In this respect, GABA receptors (GABA(A)Rs) are of particular interest because allowing anions flow across the cell membrane modulates the osmolyte flux and the cell volume. Therefore, we have here investigated the hypothesis that GABA may regulate neural stem cell proliferation by inducing cell size changes.

View Article and Find Full Text PDF

Niche homeostasis in the postnatal subependymal zone of the lateral ventricle (lSEZ) requires coordinated proliferation and differentiation of neural progenitor cells. The mechanisms regulating this balance are scarcely known. Recent observations indicate that the orphan nuclear receptor Tlx is an intrinsic factor essential in maintaining this balance.

View Article and Find Full Text PDF

Precursors within the subventricular zone (SVZ) exhibit regional variations in the expression of transcription factors important for the regulation of their proliferation and differentiation. In the anterior SVZ (aSVZ) the homeobox transcription factor distalless (Dlx)2 modulates both processes by promoting neural stem cell (NSC) activation as well as neurogenesis. Activated NSCs and transit-amplifying precursors (TAPs) in the aSVZ both express high levels of epidermal growth factor receptor (EGFR(high)) and form clones in response to exogenous EGF.

View Article and Find Full Text PDF

In the postnatal subventricular zone (SVZ) neural stem cells (NSCs) give rise to transit-amplifying precursors (TAPs) expressing high levels of epidermal growth factor receptor (EGFR) that in turn generate neuroblasts. Both TAPs and neuroblasts express distal-less (DLX)2 homeobox transcription factor but the latter proliferate less. Modulation of its expression in vivo has revealed that DLX2 affects both neurogenesis and proliferation in the postnatal SVZ.

View Article and Find Full Text PDF

In the adult subventricular zone (SVZ), astroglial stem cells generate transit-amplifying precursors (TAPs). Both stem cells and TAPs form clones in response to epidermal growth factor (EGF). However, in vivo, in the absence of sustained EGF receptor (EGFR) activation, TAPs divide a few times before differentiating into neuroblasts.

View Article and Find Full Text PDF

It is known that activity modulates neuronal differentiation in the adult brain but the signalling mechanisms underlying this process remain to be identified. We show here that activity requires soluble amyloid precursor protein (sAPP) to enhance neurite outgrowth of young neurons differentiating from neural stem cells. Inhibition of sAPP secretion and anti-APP antibodies both abolished the effect of depolarization on neurite outgrowth, whereas exogenous sAPPalpha, similar to depolarization, induced neurite elongation.

View Article and Find Full Text PDF

A simple procedure to isolate neural stem cells would greatly facilitate direct studies of their properties. Here, we exploited the increase in EGF receptor (EGFR) levels, that occurs in late development stem cells or in younger precursors upon exposure to FGF-2, to isolate cells expressing high levels of EGFR (EGFR(high)) from the developing and the adult brain. Independently of age and region of isolation, EGFR(high) cells were highly enriched in multipotent precursors and displayed similar antigenic characteristics, with the exception of GFAP and Lex/SSEA-1 that were mainly expressed in adult EGFR(high) cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: