Pathogen surveillance in animals does not provide a sufficient level of vigilance because it is generally confined to surveillance of pathogens with known economic impact in domestic animals and practically nonexistent in wildlife species. As most (re-)emerging viral infections originate from animal sources, it is important to obtain insight into viral pathogens present in the wildlife reservoir from a public health perspective. When monitoring living, free-ranging wildlife for viruses, sample collection can be challenging and availability of nucleic acids isolated from samples is often limited.
View Article and Find Full Text PDFEfficient detection of human respiratory viral pathogens is crucial in the management of patients with acute respiratory tract infection. Sequence-independent amplification of nucleic acids combined with next-generation sequencing technology and bioinformatics analyses is a promising strategy for identifying pathogens in clinical and public health settings. It allows the characterization of hundreds of different known pathogens simultaneously and of novel pathogens that elude conventional testing.
View Article and Find Full Text PDFBackground: Recent studies have clearly demonstrated the enormous virus diversity that exists among wild animals. This exemplifies the required expansion of our knowledge of the virus diversity present in wildlife, as well as the potential transmission of these viruses to domestic animals or humans.
Methods: In the present study we evaluated the viral diversity of fecal samples (n = 42) collected from 10 different species of wild small carnivores inhabiting the northern part of Spain using random PCR in combination with next-generation sequencing.
Ferrets are widely used as a small animal model for a number of viral infections, including influenza A virus and SARS coronavirus. To further analyze the microbiological status of ferrets, their fecal viral flora was studied using a metagenomics approach. Novel viruses from the families Picorna-, Papilloma-, and Anelloviridae as well as known viruses from the families Astro-, Corona-, Parvo-, and Hepeviridae were identified in different ferret cohorts.
View Article and Find Full Text PDFTo identify unknown human viruses, we analyzed serum and cerebrospinal fluid samples from patients with unexplained paraplegia from Malawi by using viral metagenomics. A novel cyclovirus species was identified and subsequently found in 15% and 10% of serum and cerebrospinal fluid samples, respectively. These data expand our knowledge of cyclovirus diversity and tropism.
View Article and Find Full Text PDFA thorough understanding of virus diversity in wildlife provides epidemiological baseline information about pathogens. In this study, eye swab samples were obtained from semi-domesticated reindeer (Rangifertarandus tarandus) in Norway during an outbreak of infectious eye disease, possibly a very early stage of infectious keratoconjunctivitis (IKC). Large scale molecular virus screening, based on host nucleic acid depletion, sequence-independent amplification and next-generation sequencing of partially purified viral nucleic acid, revealed the presence of a new papillomavirus in 2 out of 8 eye swab samples and a new betaherpesvirus in 3 out of 8 eye swab samples collected from animals with clinical signs and not in similar samples in 9 animals without clinical signs.
View Article and Find Full Text PDFThere is a global increase in infections caused by Enterobacteriaceae with plasmid-borne β-lactamases that confer resistance to third-generation cephalosporins. The epidemiology of these bacteria is not well understood, and was, therefore, investigated in a selection of 636 clinical Enterobacteriaceae with a minimal inhibitory concentration >1 mg/L for ceftazidime/ceftriaxone from a national survey (75% E. coli, 11% E.
View Article and Find Full Text PDFTo identify unknown human viruses in the enteric tract, we examined 105 stool specimens from patients with diarrhea in Bangladesh. A novel calicivirus was identified in a sample from 1 patient and subsequently found in samples from 5 other patients. Phylogenetic analyses classified this virus within the proposed genus Recovirus.
View Article and Find Full Text PDFA thorough understanding of the diversity of viruses in wildlife provides epidemiological baseline information about potential pathogens. Metagenomic analysis of the enteric viral flora revealed a new anellovirus and bocavirus species in pine martens and a new circovirus-like virus and geminivirus-related DNA virus in European badgers. In addition, sequences with homology to viruses from the families Paramyxo- and Picornaviridae were detected.
View Article and Find Full Text PDFBackground: The Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients.
Results: We present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources.
Infect Immun
November 2009
Hospital-acquired Enterococcus faecium isolates responsible for nosocomial outbreaks and invasive infections are enriched in the orf2351 and orf2430 genes, encoding the SgrA and EcbA LPXTG-like cell wall-anchored proteins, respectively. These two surface proteins were characterized to gain insight into their function, since they may have favored the rapid emergence of this nosocomial pathogen. We are the first to identify a surface adhesin among bacteria (SgrA) that binds to the extracellular matrix molecules nidogen 1 and nidogen 2, which are constituents of the basal lamina.
View Article and Find Full Text PDF