Publications by authors named "Claudia M Rocha"

In response to the growing need for sustainable analytical methods, this study explores the repurposing of screen-printed electrodes (SPEs) that would otherwise be discarded. This involves recoating the working electrode surface with a graphite (Gr) and chitosan (CTS) dispersion, creating a reusable SPE (SPE-Gr/CTS). Demonstrating its utility, SPE-Gr/CTS was employed for the detection of 4-bromo-2,5-dimethoxyphenethylamine (2C-B), a phenylethylamine commonly used for recreational proposes.

View Article and Find Full Text PDF

Lysergic acid diethylamide (LSD) and two phenethylamine classes (NBOHs and NBOMes) are the main illicit drugs found in seized blotter papers. The preliminary identification of these substances is of great interest for forensic analysis. In this context, this work constitutes the inaugural demonstration of an efficient methodology for the selective detection of LSD, NBOHs, and NBOMes, utilizing a fully 3D-printed electrochemical double cell (3D-EDC).

View Article and Find Full Text PDF

Lysergic acid diethylamide (LSD) is a prevalent psychoactive substance recognized for its hallucinogenic properties, often encountered in blotter papers for illicit consumption. Given that LSD ranks among the most widely abused illicit drugs globally, its prompt identification in seized samples is vital for forensic investigations. This study presents, for the first time, an electrochemical screening method for detecting LSD in forensic samples, utilizing a multi-wall carbon nanotube screen-printed electrode (SPE-MWCNT).

View Article and Find Full Text PDF

Objective: One-third of patients with severe rheumatoid arthritis (RA) do not achieve remission or low disease activity, or they have side effects from cDMARD and bDMARD. They will need a new treatment option such as the small molecule JAK inhibitors. In this systematic review, we evaluate the efficacy and safety data of the current jakinibs: tofacitinib, peficitinib, decernotinib, upadacitinib, baricitinib and filgotinib in patients in whom treatment with conventional or biological disease-modifying antirheumatic drugs (cDMARD and/or bDMARD) failed.

View Article and Find Full Text PDF

While the inactivation mutations that eliminate JAK3 function lead to the immunological disorders such as severe combined immunodeficiency, activation mutations, causing constitutive JAK3 signaling, are known to trigger various types of cancer or are responsible for autoimmune diseases, such as rheumatoid arthritis, psoriasis, or inflammatory bowel diseases. Treatment of hyperactivated JAK3 is still an obstacle, due to different sensibility of mutation types to conventional drugs and unwanted side effects, because these drugs are not absolutely specific for JAK3, thus inhibiting other members of the JAK family, too. Lack of information, in which way sole inhibition of JAK3 is necessary for elimination of the disease, calls for the development of isoform-specific JAK3 inhibitors.

View Article and Find Full Text PDF

Unlabelled: This work aimed at characterizing the metabolome of the isopod Porcellionides pruinosus and at assessing its variations over 14 days under laboratory culture conditions and upon exposure to the contaminant metal Nickel (Ni). The spectral profiles obtained by (1)H NMR spectroscopy were thoroughly assigned and subjected to multivariate analysis in order to highlight consistent changes. Over 50 metabolites could be identified, providing considerable new knowledge on the metabolome of these model organisms.

View Article and Find Full Text PDF

Lung tumour subtyping, particularly the distinction between adenocarcinoma (AdC) and squamous cell carcinoma (SqCC), is a critical diagnostic requirement. In this work, the metabolic signatures of lung carcinomas were investigated through (1)H NMR metabolomics, with a view to provide additional criteria for improved diagnosis and treatment planning. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyse matched tumour and adjacent control tissues from 56 patients undergoing surgical excision of primary lung carcinomas.

View Article and Find Full Text PDF

The knowledge that the organism's metabolome is a potentially informative mirror of the impact of disease and its dynamics has led to promising developments in cancer research, strongly geared toward the discovery of new biomarkers of disease onset and progression. The present text reviews the advances made in the last 10 years in lung cancer research making use of the metabolomics strategies, particularly concerning metabolite profiling of human biofluids (blood serum and plasma, urine and others), expected to reflect the deviant metabolic behavior of lung tumors. The main goal of this article is to provide the reader with an up-to-date summary of the main metabolic variations taking place in biofluids, in relation to lung cancer, as well as of the analytical strategies employed to unveil them.

View Article and Find Full Text PDF

Objective: The approved dose of rituximab (RTX) for rheumatoid arthritis (RA) is 2 × 1,000 mg infusions given 2 weeks apart. There is contradictory evidence regarding the effectiveness of a lower-dose regimen (2 × 500 mg) of RTX. Our aim was to compare the efficacy and safety of low- and high-dose RTX and to test the noninferiority of the low-dose regimen.

View Article and Find Full Text PDF

A 28-year-old patient with Takayasu's arteritis (TA) failed to respond to high doses of prednisone in combination with methotrexate, pulses of cyclophosphamide and methylprednisolone, azathioprine, mycophenolate mofetil, adalimumab and monthly infusions of infliximab 5 mg/kg. After the beginning of tocilizumab therapy (4-8 mg/kg at monthly infusions), an impressive improvement in clinical and laboratory parameters of disease activity occurred, allowing the reduction of prednisone dose from 30 to 5 mg/day. However, after the 8th dose the patient developed symptoms of vertebrobasilar insufficiency, despite maintaining a good clinical condition and normal values of inflammatory markers.

View Article and Find Full Text PDF

In this work, the variations in the metabolic profile of blood plasma from lung cancer patients and healthy controls were investigated through NMR-based metabonomics, to assess the potential of this approach for lung cancer screening and diagnosis. PLS-DA modeling of CPMG spectra from plasma, subjected to Monte Carlo Cross Validation, allowed cancer patients to be discriminated from controls with sensitivity and specificity levels of about 90%. Relatively lower HDL and higher VLDL + LDL in the patients' plasma, together with increased lactate and pyruvate and decreased levels of glucose, citrate, formate, acetate, several amino acids (alanine, glutamine, histidine, tyrosine, valine), and methanol, could be detected.

View Article and Find Full Text PDF

In this study, ¹H NMR-based metabonomics has been applied, for the first time to our knowledge, to investigate lung cancer metabolic signatures in urine, aiming at assessing the diagnostic potential of this approach and gaining novel insights into lung cancer metabolism and systemic effects. Urine samples from lung cancer patients (n = 71) and a control healthy group (n = 54) were analyzed by high resolution ¹H NMR (500 MHz), and their spectral profiles subjected to multivariate statistics, namely, Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Projections to Latent Structures (OPLS)-DA. Very good discrimination between cancer and control groups was achieved by multivariate modeling of urinary profiles.

View Article and Find Full Text PDF

This study aims to evaluate the potential of (1)H NMR spectroscopy, combined with multivariate statistics, for discriminating between tumour and non-involved (control) pulmonary parenchyma and for providing biochemical information on different histological types. Paired tissue samples from 24 primary lung tumours were directly analysed by high-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy (500 MHz), and their spectral profiles subjected to principal component analysis (PCA) and partial least squares regression discriminant analysis (PLS-DA). Tumour and adjacent control parenchyma were clearly discriminated in the PLS-DA model with a high level of sensitivity (95% of tumour samples correctly classified) and 100% specificity (no false positives).

View Article and Find Full Text PDF

This work aims at characterizing the metabolic profile of human lung cancer, to gain new insights into tumor metabolism and to identify possible biomarkers with potential diagnostic value in the future. Paired samples of tumor and noninvolved adjacent tissues from 12 lung tumors have been directly analyzed by (1)H HRMAS NMR (500/600 MHz) enabling, for the first time to our knowledge, the identification of over 50 compounds. The effect of temperature on tissue stability during acquisition time has also been investigated, demonstrating that analysis should be performed within less than two hours at low temperature (277 K), to minimize glycerophosphocholine (GPC) and phosphocholine (PC) conversion to choline and reduce variations in some amino acids.

View Article and Find Full Text PDF