High-grade osteosarcoma (OS) is the most common primary bone tumor mainly affecting children and young adults. First-line treatment consists of neo-adjuvant chemotherapy with doxorubicin, cisplatin, and methotrexate and surgery. The mean long-term survival rate for localized disease at diagnosis is 65-70%, dropping down to 20% when metastases are present at diagnosis.
View Article and Find Full Text PDFMethotrexate (MTX) is one of the most important drugs included in the first-line protocols to treat high-grade osteosarcoma (HGOS). Although several polymorphisms have been reported to be associated with drug response or MTX-related toxicity in pharmacogenetic studies, their role in the development of MTX resistance in HGOS is still unclear. Therefore, in this study, 22 single nucleotide polymorphisms (SNPs) in 4 genes of the folate metabolism, 7 MTX transporter genes, and 2 SNPs of the tumor protein p53 () gene were investigated using a custom multimodal-targeted next-generation sequencing (mmNGS) approach in 8 MTX-resistant and 12 MTX-sensitive human HGOS cell lines.
View Article and Find Full Text PDFImproving the prognosis and cure rate of HGOSs (high-grade osteosarcomas) is an absolute need. Immune-based treatment approaches have been increasingly taken into consideration, in particular for metastatic, relapsed and refractory HGOS patients, to ameliorate the clinical results currently achieved. This review is intended to give an overview on the immunotherapeutic treatments targeting, counteracting or exploiting the different immune cell compartments that are present in the HGOS tumor microenvironment.
View Article and Find Full Text PDFCisplatin (CDDP) is a drug for high-grade osteosarcoma (HGOS) treatment. Several germline pharmacogenetic studies have revealed associations between single nucleotide polymorphisms (SNPs) and CDDP-based therapy response or CDDP-related toxicity in patients with HGOS. Whether these variants could play a biological role in HGOS cells has not been studied so far.
View Article and Find Full Text PDFThe ATP-binding cassette (ABC) transporter superfamily consists of several proteins with a wide repertoire of functions. Under physiological conditions, ABC transporters are involved in cellular trafficking of hormones, lipids, ions, xenobiotics, and several other molecules, including a broad spectrum of chemical substrates and chemotherapeutic drugs. In cancers, ABC transporters have been intensely studied over the past decades, mostly for their involvement in the multidrug resistance (MDR) phenotype.
View Article and Find Full Text PDFHigh-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40-50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities.
View Article and Find Full Text PDFFront Oncol
June 2020
[This corrects the article DOI: 10.3389/fonc.2020.
View Article and Find Full Text PDFHigh-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities).
View Article and Find Full Text PDFDoxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells.
View Article and Find Full Text PDFThis work describes the set-up of a shared platform among the laboratories of the Alleanza Contro il Cancro (ACC) Italian Research Network for the identification of fusion transcripts in sarcomas by using Next Generation Sequencing (NGS). Different NGS approaches, including anchored multiplex PCR and hybrid capture-based panels, were employed to profile a large set of sarcomas of different histotypes. The analysis confirmed the reliability of NGS RNA-based approaches in detecting sarcoma-specific rearrangements.
View Article and Find Full Text PDFOsteosarcoma, Ewing sarcoma and chondrosarcoma are rare diseases but the most common primary tumors of bone. The genes directly involved in the sarcomagenesis, tumor progression and treatment responsiveness are not completely defined for these tumors, and the powerful discovery of genetic analysis is highly warranted in the view of improving the therapy and cure of patients. The review summarizes recent advances concerning the molecular and genetic background of these three neoplasms and, of their most common variants, highlights the putative therapeutic targets and the clinical trials that are presently active, and notes the fundamental issues that remain unanswered.
View Article and Find Full Text PDFTreatment of high-grade osteosarcoma, the most common malignant tumor of bone, is largely based on administration of cisplatin and other DNA damaging drugs. Altered DNA repair mechanisms may thus significantly impact on either response or resistance to chemotherapy. In this study, by using a panel of human osteosarcoma cell lines, either sensitive or resistant to cisplatin, we assessed the value as candidate therapeutic targets of DNA repair-related factors belonging to the nucleotide excision repair (NER) or base excision repair (BER) pathways, as well as of a group of 18 kinases, which expression was higher in cisplatin-resistant variants compared to their parental cell lines and may be indirectly involved in DNA repair.
View Article and Find Full Text PDFThe ATP Binding Cassette transporter B1 (ABCB1) induces chemoresistance in osteosarcoma, because it effluxes doxorubicin, reducing the intracellular accumulation, toxicity, and immunogenic cell death induced by the drug. The ATP Binding Cassette transporter A1 (ABCA1) effluxes isopentenyl pyrophosphate (IPP), a strong activator of anti-tumor Vγ9Vδ2 T-cells. Recruiting this population may represent an alternative strategy to rescue doxorubicin efficacy in ABCB1-expressing osteosarcoma.
View Article and Find Full Text PDFExpert Opin Emerg Drugs
September 2019
Doxorubicin (dox) is one of the first-line drug in osteosarcoma treatment but its effectiveness is limited by the efflux pump P-glycoprotein (Pgp) and by the onset of cardiotoxicity. We previously demonstrated that synthetic doxs conjugated with a HS-releasing moiety (Sdox) were less cardiotoxic and more effective than dox against Pgp-overexpressing osteosarcoma cells. In order to increase the active delivery to tumor cells, we produced hyaluronic acid (HA)-conjugated liposomes containing Sdox (HA-Lsdox), exploiting the abundance of the HA receptor CD44 in osteosarcoma.
View Article and Find Full Text PDFDNA damaging drugs are widely used for the chemotherapeutic treatment of high-grade osteosarcoma (HGOS). In HGOS patients, several germline polymorphisms have been reported to impact on the development of adverse toxic events related to DNA damaging drugs treatment. Some of these polymorphisms, when present in tumor cells, may also influence treatment response and prognosis of HGOS patients.
View Article and Find Full Text PDFGenetic characterization of osteosarcoma has evolved during the last decade, thanks to the integrated application of conventional and new candidate-driven and genome-wide technologies. Areas covered: This review provides an overview of the state of art in genetic testing applied to osteosarcoma, with particular regard to novel candidate genetic biomarkers that can be analyzed in tumor tissue and blood samples, which might be used to predict toxicity and prognosis, detect disease relapse, and improve patients' selection criteria for tailoring treatment. Expert commentary: Genetic testing based on modern technologies is expected to indicate new osteosarcoma-related prognostic markers and driver genes, which may highlight novel therapeutic targets and patients stratification biomarkers.
View Article and Find Full Text PDFCyclin-dependent kinase 2 (CDK2) has been reported to be essential for cell proliferation in several human tumours and it has been suggested as an appropriate target to be considered in order to enhance the efficacy of treatment regimens based on the use of DNA damaging drugs. We evaluated the clinical impact of CDK2 overexpression on a series of 21 high-grade osteosarcoma (OS) samples profiled by using cDNA microarrays. We also assessed the in vitro efficacy of the CDKs inhibitor roscovitine in a panel of drug-sensitive and drug-resistant human OS cell lines.
View Article and Find Full Text PDFSecond-line treatment of high-grade osteosarcoma (HGOS) patients is based on different approaches and chemotherapy protocols, which are not yet standardized. Although several drugs have been used in HGOS second-line protocols, none of them has provided fully satisfactory results and the role of rescue chemotherapy is not well defined yet. This article focuses on the drugs that have most frequently been used for second-line treatment of HGOS, highlighting the present knowledge on their mechanisms of action and resistance and on gene polymorphisms with possible impact on treatment sensitivity or toxicity.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
January 2017
Doxorubicin is one of the leading drugs for osteosarcoma standard chemotherapy. A total of 40% to 45% of high-grade osteosarcoma patients are unresponsive, or only partially responsive, to doxorubicin (Dox), due to the overexpression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). The aim of this work is to improve Dox-based regimens in resistant osteosarcomas.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
March 2017
Antifolates are structural analogs of folates, which have been used as antitumor drugs for more than 60 years. The antifolate drug most commonly used for treating human tumors is methotrexate (MTX), which is utilized widely in first-line treatment protocols of high-grade osteosarcoma (HGOS). In addition to MTX, two other antifolates, trimetrexate and pemetrexed, have been tested in clinical settings for second-line treatment of recurrent HGOS with patients unfortunately showing modest activity.
View Article and Find Full Text PDFThis study aimed to identify associations between germline polymorphisms and risk of high-grade osteosarcoma (HGOS) development, event-free survival (EFS) and toxicity in HGOS patients treated with neo-adjuvant chemotherapy and surgery.Germline polymorphisms of 31 genes known to be relevant for transport or metabolism of all four drugs used in HGOS chemotherapy (methotrexate, doxorubicin, cisplatin and ifosfamide) were genotyped in 196 patients with HGOS and in 470 healthy age and gender-matched controls. Of these 196 HGOS patients, a homogeneously treated group of 126 patients was considered for survival analyses (survival cohort).
View Article and Find Full Text PDF