Mammalian sperm capacitation is a prerequisite for successful fertilization. Capacitation involves biochemical and physiological modifications of sperm as they travel through the female reproductive tract. These modifications prepare the sperm to undergo the acrosome reaction (AR), an acrosome vesicle exocytosis that is necessary for gamete fusion.
View Article and Find Full Text PDFThe spermatozoa acrosome reaction (AR) is essential for mammalian fertilization. Few methods allow visualization of AR in real time together with Ca²⁺ imaging. Here, we show that FM4-64, a fluorescent dye used to follow exocytosis, reliably reports AR progression induced by ionomycin and progesterone in human spermatozoa.
View Article and Find Full Text PDFSpermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca(2+) ([Ca(2+)]i); however, very few studies exist on [Ca(2+)]i dynamics in these cells. Other tissues display Ca(2+) oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications.
View Article and Find Full Text PDF